Switch to: References

Add citations

You must login to add citations.
  1. Some Observations upon "Realistic" Trajectories in Bohmian Quantum Mechanics.María C. Boscá - 2013 - Theoria 28 (1):45-60.
    _Experimental situations in which we observe quantum effects that deviate from the intuitive expectations of the classical world call for an interdisciplinary discussion, and one fundamental issue to be considered is the compatibility between the description of phenomena and the assumption of an objective reality. This paper discusses the ontological interpretation of Bohmian quantum mechanics, focusing on the use of the term “trajectory” and the difficulties associated with its connection to a “real” (objective) trajectory. __My conclusion is that the intended (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Worlds in a Stochastic Universe: On the Emergence of World Histories in Minimal Bohmian Mechanics.Alexander Ehmann - 2020 - Dissertation, Lingnan University
    This thesis develops a detailed account of the emergence of for all practical purposes continuous, quasi-classical world histories from the discontinuous, stochastic micro dynamics of Minimal Bohmian Mechanics (MBM). MBM is a non-relativistic quantum theory. It results from excising the guiding equation from standard Bohmian Mechanics (BM) and reinterpreting the quantum equilibrium hypothesis as a stochastic guidance law for the random actualization of configurations of Bohmian particles. On MBM, there are no continuous trajectories linking up individual configurations. Instead, individual configurations (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bohmian mechanics.Roderich Tumulka, Detlef Durr, Sheldon Goldstein & Nino Zanghi - 2009 - Compendium of Quantum Physics.
    Bohmian mechanics is a theory about point particles moving along trajectories. It has the property that in a world governed by Bohmian mechanics, observers see the same statistics for experimental results as predicted by quantum mechanics. Bohmian mechanics thus provides an explanation of quantum mechanics. Moreover, the Bohmian trajectories are defined in a non-conspiratorial way by a few simple laws.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Underdetermination: A Realist Interpretation of Quantum Mechanics and Bohmian Mechanics.Chunling Yan - 2023 - Foundations of Science 28 (2):529-550.
    It is generally believed that two rival non-relativistic quantum theories, the realist interpretation of quantum mechanics and Bohmian mechanics, are empirically equivalent. In this paper, I use these two quantum theories to show that it is possible to offer a solution to underdetermination in some local cases, by specifying what counts as relevant empirical evidence in empirical equivalence and underdetermination. I argue for a _domain-sensitive_ approach to underdetermination. Domain sensitivity on theories’ predictions plays a role in determining whether two or (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Typical: A Theory of Typicality and Typicality Explanation.Isaac Wilhelm - 2022 - British Journal for the Philosophy of Science 73 (2):561-581.
    Typicality is routinely invoked in everyday contexts: bobcats are typically short-tailed; people are typically less than seven feet tall. Typicality is invoked in scientific contexts as well: typical gases expand; typical quantum systems exhibit probabilistic behaviour. And typicality facts like these support many explanations, both quotidian and scientific. But what is it for something to be typical? And how do typicality facts explain? In this paper, I propose a general theory of typicality. I analyse the notion of a typical property. (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Solving the measurement problem: De broglie-Bohm loses out to Everett. [REVIEW]Harvey R. Brown & David Wallace - 2004 - Foundations of Physics 35 (4):517-540.
    The quantum theory of de Broglie and Bohm solves the measurement problem, but the hypothetical corpuscles play no role in the argument. The solution finds a more natural home in the Everett interpretation.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Quantum Equilibrium in Stochastic de Broglie–Bohm–Bell Quantum Mechanics.Jeroen C. Vink - 2023 - Foundations of Physics 53 (1):1-19.
    This paper investigates dynamical relaxation to quantum equilibrium in the stochastic de Broglie–Bohm–Bell formulation of quantum mechanics. The time-dependent probability distributions are computed as in a Markov process with slowly varying transition matrices. Numerical simulations, supported by exact results for the large-time behavior of sequences of (slowly varying) transition matrices, confirm previous findings that indicate that de Broglie–Bohm–Bell dynamics allows an arbitrary initial probability distribution to relax to quantum equilibrium; i.e., there is no need to make the ad-hoc assumption that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Conceptual Issues Surrounding the Notion of Relational Bohmian Dynamics.Antonio Vassallo & Pui Him Ip - 2016 - Foundations of Physics 46 (8):943-972.
    The paper presents a program to construct a non-relativistic relational Bohmian theory, that is, a theory of N moving point-like particles that dispenses with space and time as fundamental background structures. The relational program proposed is based on the best-matching framework originally developed by Julian Barbour. In particular, the paper focuses on the conceptual problems that arise when trying to implement such a program. It is argued that pursuing a relational strategy in the Bohmian context leads to a more parsimonious (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Can Bohmian mechanics be made background independent?Antonio Vassallo - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):242-250.
    The paper presents an inquiry into the question regarding the compatibility of Bohmian mechanics, intended as a non-local theory of moving point-like particles, with background independence. This issue is worth being investigated because, if the Bohmian framework has to be of some help in developing new physics, it has to be compatible with the most well-established traits of modern physics, background independence being one of such traits. The paper highlights the fact that the notion of background independence in the context (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Is quantum indeterminism real? Theological implications.Claudia E. Vanney - 2015 - Zygon 50 (3):736-756.
    Quantum mechanics studies physical phenomena on a microscopic scale. These phenomena are far beyond the reach of our observation, and the connection between QM's mathematical formalism and the experimental results is very indirect. Furthermore, quantum indeterminism defies common sense. Microphysical experiments have shown that, according to the empirical context, electrons and quanta of light behave as waves and other times as particles, even though it is impossible to design an experiment that manifests both behaviors at the same time. Unlike Newtonian (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Bohm's theory of quantum mechanics and the notion of classicality.Marij van Strien - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 71 (C):72-86.
    When David Bohm published his alternative theory of quantum mechanics in 1952, it was not received well; a recurring criticism was that it formed a reactionary attempt to return to classical physics. In response, Bohm emphasized the progressiveness of his approach, and even turned the accusation of classicality around by arguing that he wanted to move beyond classical elements still inherent in orthodox quantum mechanics. In later years, he moved more and more towards speculative and mystical directions. This paper aims (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantum propensities.Mauricio Suárez - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):418-438.
    This paper reviews four attempts throughout the history of quantum mechanics to explicitly employ dispositional notions in order to solve the quantum paradoxes, namely: Margenau's latencies, Heisenberg's potentialities, Maxwell's propensitons, and the recent selective propensities interpretation of quantum mechanics. Difficulties and challenges are raised for all of them, and it is concluded that the selective propensities approach nicely encompasses the virtues of its predecessors. Finally, some strategies are discussed for reading similar dispositional notions into two other well-known interpretations of quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Measurement and the justification of the statistical postulate in Bohm's causal interpretation of quantum mechanics.J. Subramanyam - 1997 - Synthese 113 (3):423-445.
    I briefly sketch Bohm's causal interpretation (BCI) and its solution to the measurement problem. Crucial to BCI's no-collapse account of both ideal and non-ideal measurement is the existence of particles in addition to wavefunctions. The particles in their role as the producers of the observable experimental outcomes render practical considerations, such as what observables can be reasonably measured or how to get rid of interference terms in non-ideal measurements, secondary to BCI's account of measurement. I then explain why it is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Time reversal invariance and ontology.Ward Struyve - forthcoming - British Journal for the Philosophy of Science.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On Epstein’s Trajectory Model of Non-Relativistic Quantum Mechanics.Ward Struyve - 2010 - Foundations of Physics 40 (11):1700-1711.
    In 1952 Bohm presented a theory about non-relativistic point-particles that move deterministically along trajectories and showed how it reproduces the predictions of standard quantum theory. This theory was actually presented before by de Broglie in 1926, but Bohm’s particular formulation of the theory inspired Epstein to come up with a different trajectory model. The aim of this paper is to examine the empirical predictions of this model. It is found that the trajectories in this model are in general very different (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • One world is (probably) just as good as many.Jer Steeger - 2022 - Synthese 200 (97):1-32.
    One of our most sophisticated accounts of objective chance in quantum mechanics involves the Deutsch-Wallace theorem, which uses state-space symmetries to justify agents’ use of the Born rule when the quantum state is known. But Wallace argues that this theorem requires an Everettian approach to measurement. I find that this argument is unsound. I demonstrate a counter-example by applying the Deutsch-Wallace theorem to the de Broglie-Bohm pilot-wave theory.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Surrealistic Bohmian trajectories appraised.Albert Solé - 2017 - European Journal for Philosophy of Science 7 (3):467-492.
    Englert et al. claim that, in certain circumstances, the Bohmian trajectory of a test particle does not match the reports of which-path detectors, concluding that the Bohmian trajectories are not real, but “surrealistic.” However, Hiley and Callaghan argue that, if Bohm’s interpretation is correctly applied, no such mismatch is ever sanctioned. Unfortunately, the debate was never settled since nobody showed where the source of disagreement resided. In this paper, I reassess the debate over such “surrealistic” trajectories and I derive both (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Muchos Mundos Bohmianos.Albert Solé - 2012 - Scientiae Studia 10 (1):105-136.
    Bohmian mechanics is commonly characterized as just another interpretation of quantum mechanics.In this paper I defend an alternative view, according to which Bohmian mechanics is better understood as a theory that can be interpreted in many ways. After characterizing the interpretive divide between the quantum potential approach and the guidance approach to Bohmian mechanics, I show that different interpretations of the theory correspond to radically different and often incompatible ontologies or Bohmian worlds. More concretely, I discuss the possibility of an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Introduction: space–time and the wave function.Albert Solé & Carl Hoefer - 2015 - Synthese 192 (10):3055-3070.
    Download  
     
    Export citation  
     
    Bookmark  
  • Bohmian mechanics without wave function ontology.Albert Solé - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (4):365-378.
    In this paper, I critically assess different interpretations of Bohmian mechanics that are not committed to an ontology based on the wave function being an actual physical object that inhabits configuration space. More specifically, my aim is to explore the connection between the denial of configuration space realism and another interpretive debate that is specific to Bohmian mechanics: the quantum potential versus guidance approaches. Whereas defenders of the quantum potential approach to the theory claim that Bohmian mechanics is better formulated (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • On a Symmetry Argument for the Guidance Equation in Bohmian Mechanics.Bradford Skow - 2010 - International Studies in the Philosophy of Science 24 (4):393-410.
    Bohmian mechanics faces an underdetermination problem: when it comes to solving the measurement problem, alternatives to the Bohmian guidance equation work just as well as the official guidance equation. One way to argue that the guidance equation is superior to its rivals is to use a symmetry argument: of the candidate guidance equations, the official guidance equation is the simplest Galilean-invariant candidate. This symmetry argument---if it worked---would solve the underdetermination problem. But the argument does not work. It fails because it (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • What’s the Matter with Super-Humeanism?William M. R. Simpson - 2021 - British Journal for the Philosophy of Science 72 (3):893-911.
    Esfeld has proposed a minimalist ontology of nature called ‘super-Humeanism’ that purports to accommodate quantum phenomena and avoid standard objections to neo-Humean metaphysics. I argue that Esfeld’s sparse ontology has counterintuitive consequences and generates two self-undermining dilemmas concerning the nature of time and space. Contrary to Esfeld, I deny that super-Humeanism supports an ontology of microscopic particles that follow continuous trajectories through space.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Cosmic hylomorphism: A powerist ontology of quantum mechanics.William M. R. Simpson - 2021 - European Journal for Philosophy of Science 11 (1):1-25.
    The primitive ontology approach to quantum mechanics seeks to account for quantum phenomena in terms of a distribution of matter in three-dimensional space and a law of nature that describes its temporal development. This approach to explaining quantum phenomena is compatible with either a Humean or powerist account of laws. In this paper, I offer a powerist ontology in which the law is specified by Bohmian mechanics for a global configuration of particles. Unlike in other powerist ontologies, however, this law (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Introduction to the Philosophy of Statistical Mechanics: Can Probability Explain the Arrow of Time in the Second Law of Thermodynamics?Orly Shenker & Meir Hemmo - 2011 - Philosophy Compass 6 (9):640-651.
    The arrow of time is a familiar phenomenon we all know from our experience: we remember the past but not the future and control the future but not the past. However, it takes an effort to keep records of the past, and to affect the future. For example, it would take an immense effort to unmix coffee and milk, although we easily mix them. Such time directed phenomena are sub- sumed under the Second Law of Thermodynamics. This law characterizes our (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum Mechanics as Classical Physics.Charles T. Sebens - 2015 - Philosophy of Science 82 (2):266-291.
    Here I explore a novel no-collapse interpretation of quantum mechanics that combines aspects of two familiar and well-developed alternatives, Bohmian mechanics and the many-worlds interpretation. Despite reproducing the empirical predictions of quantum mechanics, the theory looks surprisingly classical. All there is at the fundamental level are particles interacting via Newtonian forces. There is no wave function. However, there are many worlds.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Multi-field and Bohm’s theory.Davide Romano - 2020 - Synthese (11):29 June 2020.
    In the recent literature, it has been shown that the wave function in the de Broglie–Bohm theory can be regarded as a new kind of field, i.e., a "multi-field", in three-dimensional space. In this paper, I argue that the natural framework for the multi-field is the original second-order Bohm’s theory. In this context, it is possible: i) to construe the multi-field as a real-valued scalar field; ii) to explain the physical interaction between the multi-field and the Bohmian particles; and iii) (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • A Decoherence-Based Approach to the Classical Limit in Bohm’s Theory.Davide Romano - 2023 - Foundations of Physics 53 (2):1-27.
    The paper explains why the de Broglie–Bohm theory reduces to Newtonian mechanics in the macroscopic classical limit. The quantum-to-classical transition is based on three steps: (i) interaction with the environment produces effectively factorized states, leading to the formation of _effective wave functions_ and hence _decoherence_; (ii) the effective wave functions selected by the environment—the pointer states of decoherence theory—will be well-localized wave packets, typically Gaussian states; (iii) the quantum potential of a Gaussian state becomes negligible under standard classicality conditions; therefore, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Point of Primitive Ontology.Paula Reichert & Dustin Lazarovici - 2022 - Foundations of Physics 52 (6):1-18.
    AbstractBohmian mechanics grounds the predictions of quantum mechanics in precise dynamical laws for a primitive ontology of point particles. In an appraisal of the de-Broglie–Bohm theory, the paper discusses the crucial epistemological and conceptual role that a primitive ontology plays within a physical theory. It argues that quantum theories without primitive ontology fail to make contact with observable reality in a clear and consistent manner. Finally, it discusses Einstein’s epistemological model and why it supports the primitive ontology approach.
    Download  
     
    Export citation  
     
    Bookmark  
  • The World in the Wave Function: A Metaphysics for Quantum Physics, by Alyssa Ney.James Read - 2024 - Mind 133 (530):560-571.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Introduction to the Philosophy of Statistical Mechanics: Can Probability Explain the Arrow of Time in the Second Law of Thermodynamics? [REVIEW]Meir Hemmo Orly Shenker - 2011 - Philosophy Compass 6 (9):640-651.
    The arrow of time is a familiar phenomenon we all know from our experience: we remember the past but not the future and control the future but not the past. However, it takes an effort to keep records of the past, and to affect the future. For example, it would take an immense effort to unmix coffee and milk, although we easily mix them. Such time directed phenomena are subsumed under the Second Law of Thermodynamics. This law characterizes our experience (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Darwinian Populations and Natural Selection.Gry Oftedal - 2010 - International Studies in the Philosophy of Science 24 (3):333-336.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Theory of (Exclusively) Local Beables.Travis Norsen - 2010 - Foundations of Physics 40 (12):1858-1884.
    It is shown how, starting with the de Broglie–Bohm pilot-wave theory, one can construct a new theory of the sort envisioned by several of QM’s founders: a Theory of Exclusively Local Beables (TELB). In particular, the usual quantum mechanical wave function (a function on a high-dimensional configuration space) is not among the beables posited by the new theory. Instead, each particle has an associated “pilot-wave” field (living in physical space). A number of additional fields (also fields on physical space) maintain (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Can the wave function in configuration space be replaced by single-particle wave functions in physical space?Travis Norsen, Damiano Marian & Xavier Oriols - 2015 - Synthese 192 (10):3125-3151.
    The ontology of Bohmian mechanics includes both the universal wave function and particles. Proposals for understanding the physical significance of the wave function in this theory have included the idea of regarding it as a physically-real field in its 3N-dimensional space, as well as the idea of regarding it as a law of nature. Here we introduce and explore a third possibility in which the configuration space wave function is simply eliminated—replaced by a set of single-particle pilot-wave fields living in (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • An empirical approach to symmetry and probability.Jill North - 2010 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 41 (1):27-40.
    We often use symmetries to infer outcomes’ probabilities, as when we infer that each side of a fair coin is equally likely to come up on a given toss. Why are these inferences successful? I argue against answering this with an a priori indifference principle. Reasons to reject that principle are familiar, yet instructive. They point to a new, empirical explanation for the success of our probabilistic predictions. This has implications for indifference reasoning in general. I argue that a priori (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Quantum Mechanics: Myths and Facts. [REVIEW]Hrvoje Nikolić - 2007 - Foundations of Physics 37 (11):1563-1611.
    A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of “myths”, that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The Status of our Ordinary Three Dimensions in a Quantum Universe1.Alyssa Ney - 2010 - Noûs 46 (3):525-560.
    There are now several, realist versions of quantum mechanics on offer. On their most straightforward, ontological interpretation, these theories require the existence of an object, the wavefunction, which inhabits an extremely high-dimensional space known as configuration space. This raises the question of how the ordinary three-dimensional space of our acquaintance fits into the ontology of quantum mechanics. Recently, two strategies to address this question have emerged. First, Tim Maudlin, Valia Allori, and her collaborators argue that what I have just called (...)
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • Neo-positivist metaphysics.Alyssa Ney - 2012 - Philosophical Studies 160 (1):53-78.
    Some philosophers argue that many contemporary debates in metaphysics are “illegitimate,” “shallow,” or “trivial,” and that “contemporary analytic metaphysics, a professional activity engaged in by some extremely intelligent and morally serious people, fails to qualify as part of the enlightened pursuit of objective truth, and should be discontinued” (Ladyman and Ross, Every thing must go: Metaphysics naturalized , 2007 ). Many of these critics are explicit about their sympathies with Rudolf Carnap and his circle, calling themselves ‘neo-positivists’ or ‘neo-Carnapians.’ Yet (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Three arguments for wave function realism.Alyssa Ney - 2023 - European Journal for Philosophy of Science 13 (4):1-18.
    Wave function realism is an interpretative framework for quantum theories which recommends taking the central ontology of these theories to consist of the quantum wave function, understood as a field on a high-dimensional space. This paper presents and evaluates three standard arguments for wave function realism, and clarifies the sort of ontological framework these arguments support.
    Download  
     
    Export citation  
     
    Bookmark  
  • Fundamental physical ontologies and the constraint of empirical coherence: a defense of wave function realism.Alyssa Ney - 2015 - Synthese 192 (10):3105-3124.
    This paper defends wave function realism against the charge that the view is empirically incoherent because our evidence for quantum theory involves facts about objects in three-dimensional space or space-time . It also criticizes previous attempts to defend wave function realism against this charge by claiming that the wave function is capable of grounding local beables as elements of a derivative ontology.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Two notions of holism.Elizabeth Miller - 2020 - Synthese 197 (10):4187-4206.
    A simple argument proposes a direct link between realism about quantum mechanics and one kind of metaphysical holism: if elementary quantum theory is at least approximately true, then there are entangled systems with intrinsic whole states for which the intrinsic properties and spatiotemporal arrangements of salient subsystem parts do not suffice. Initially, the proposal is compelling: we can find variations on such reasoning throughout influential discussions of entanglement. Upon further consideration, though, this simple argument proves a bit too simple. To (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum Entanglement, Bohmian Mechanics, and Humean Supervenience.Elizabeth Miller - 2014 - Australasian Journal of Philosophy 92 (3):567-583.
    David Lewis is a natural target for those who believe that findings in quantum physics threaten the tenability of traditional metaphysical reductionism. Such philosophers point to allegedly holistic entities they take both to be the subjects of some claims of quantum mechanics and to be incompatible with Lewisian metaphysics. According to one popular argument, the non-separability argument from quantum entanglement, any realist interpretation of quantum theory is straightforwardly inconsistent with the reductive conviction that the complete physical state of the world (...)
    Download  
     
    Export citation  
     
    Bookmark   93 citations  
  • Clarifying the New Problem for Quantum Mechanics: Reply to Vaidman.Alexander Meehan - 2021 - Foundations of Physics 51 (1):1-6.
    I respond to Vaidman’s recent criticisms of my paper “A New Problem for Quantum Mechanics”.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A New Problem for Quantum Mechanics.Alexander Meehan - 2020 - British Journal for the Philosophy of Science:000-000.
    In this article I raise a new problem for quantum mechanics, which I call the control problem. Like the measurement problem, the control problem places a fundamental constraint on quantum theories. The characteristic feature of the problem is its focus on state preparation. In particular, whereas the measurement problem turns on a premise about the completeness of the quantum state ('no hidden variables'), the control problem turns on a premise about our ability to prepare or control quantum states. After raising (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A New Problem for Quantum Mechanics.Alexander Meehan - 2022 - British Journal for the Philosophy of Science 73 (3):631-661.
    In this article I raise a new problem for quantum mechanics, which I call the control problem. Like the measurement problem, the control problem places a fundamental constraint on quantum theories. The characteristic feature of the problem is its focus on state preparation. In particular, whereas the measurement problem turns on a premise about the completeness of the quantum state (‘no hidden variables’), the control problem turns on a premise about our ability to prepare or control quantum states. After raising (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Interpretive analogies between quantum and statistical mechanics.C. D. McCoy - 2020 - European Journal for Philosophy of Science 10 (1):9.
    The conspicuous similarities between interpretive strategies in classical statistical mechanics and in quantum mechanics may be grounded on their employment of common implementations of probability. The objective probabilities which represent the underlying stochasticity of these theories can be naturally associated with three of their common formal features: initial conditions, dynamics, and observables. Various well-known interpretations of the two theories line up with particular choices among these three ways of implementing probability. This perspective has significant application to debates on primitive ontology (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • What could be objective about probabilities?Tim Maudlin - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):275-291.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Three measurement problems.Tim Maudlin - 1995 - Topoi 14 (1):7-15.
    The aim of this essay is to distinguish and analyze several difficulties confronting attempts to reconcile the fundamental quantum mechanical dynamics with Born''s rule. It is shown that many of the proposed accounts of measurement fail at least one of the problems. In particular, only collapse theories and hidden variables theories have a chance of succeeding, and, of the latter, the modal interpretations fail. Any real solution demands new physics.
    Download  
     
    Export citation  
     
    Bookmark   105 citations  
  • Interfering Quantum Trajectories Without Which-Way Information.Kiran Mathew & Moncy V. John - 2017 - Foundations of Physics 47 (7):873-886.
    Quantum trajectory-based descriptions of interference between two coherent stationary waves in a double-slit experiment are presented, as given by the de Broglie–Bohm and modified de Broglie–Bohm formulations of quantum mechanics. In the dBB trajectory representation, interference between two spreading wave packets can be shown also as resulting from motion of particles. But a trajectory explanation for interference between stationary states is so far not available in this scheme. We show that both the dBB and MdBB trajectories are capable of producing (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum pointillism with relational identity.Jorge Manero - 2021 - Synthese 199 (3-4):10639-10666.
    The feasibility of establishing a proper notion of a distinguishable object in the context of the de Broglie–Bohm approach to quantum mechanics seems, at first sight, uncontroversial by virtue of the fact that this theory can supposedly be interpreted in terms of a system of objective particles distinguished by individuating properties. However, after conducting a critical revision and evaluation of this trivial interpretation, and having assessed different alternatives that have been proposed in recent literature, I argue that within this theory (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Existence of a Preserved Ontology Posited by a High-Dimensional Bohmian Interpretation.Jorge Manero - forthcoming - Foundations of Science:1-22.
    It has been argued that in the context of Bohm’s approach to quantum mechanics, the postulation of a three-dimensional ontology (as opposed to a high-dimensional one) is presumed to be the only interpretation that may reliably support object-oriented realism by virtue of the fact that this ontology is approximately preserved through scientific change, at least in the classical–quantum transition. Based on an interpretative analysis of the Bohmian formulation, I shall critically evaluate the tenability of this argument. In so doing, I (...)
    Download  
     
    Export citation  
     
    Bookmark