Switch to: References

Add citations

You must login to add citations.
  1. Structural Completeness in Relevance Logics.J. G. Raftery & K. Świrydowicz - 2016 - Studia Logica 104 (3):381-387.
    It is proved that the relevance logic \ has no structurally complete consistent axiomatic extension, except for classical propositional logic. In fact, no other such extension is even passively structurally complete.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Singly generated quasivarieties and residuated structures.Tommaso Moraschini, James G. Raftery & Johann J. Wannenburg - 2020 - Mathematical Logic Quarterly 66 (2):150-172.
    A quasivariety of algebras has the joint embedding property (JEP) if and only if it is generated by a single algebra A. It is structurally complete if and only if the free ℵ0‐generated algebra in can serve as A. A consequence of this demand, called ‘passive structural completeness’ (PSC), is that the nontrivial members of all satisfy the same existential positive sentences. We prove that if is PSC then it still has the JEP, and if it has the JEP and (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Note on algebraic models for relevance logic.Josep M. Font & Gonzalo Rodríguez - 1990 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 36 (6):535-540.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • On Pretabular Extensions of Relevance Logic.Asadollah Fallahi & James Gordon Raftery - 2024 - Studia Logica 112 (5):967-985.
    We exhibit infinitely many semisimple varieties of semilinear De Morgan monoids (and likewise relevant algebras) that are not tabular, but which have only tabular proper subvarieties. Thus, the extension of relevance logic by the axiom \((p\rightarrow q)\vee (q\rightarrow p)\) has infinitely many pretabular axiomatic extensions, regardless of the presence or absence of Ackermann constants.
    Download  
     
    Export citation  
     
    Bookmark