Switch to: References

Add citations

You must login to add citations.
  1. Take a Ride on a Time Machine.John Earman, Christopher Smeenk & Christian Wuthrich - unknown
    We discuss the possibility to build and operate a time machine, a device that produces closed timelike curves. We specify the spacetime structure needed to implement a time machine and assess attempted no-go results against time machines in classical general relativity, semi-classical quantum gravity, quantum field theory on curved spacetime, and in Euclidean quantum gravity. Such no-go theorems for time machines would show that, under physically reasonable conditions, CTCs cannot develop in spacetimes initially free of these pathologies. Our review indicates (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Do the Laws of Physics Forbid the Operation of Time Machines?John Earman, Chris Smeenk & Christian Wüthrich - 2009 - Synthese 169 (1):91 - 124.
    We address the question of whether it is possible to operate a time machine by manipulating matter and energy so as to manufacture closed timelike curves. This question has received a great deal of attention in the physics literature, with attempts to prove no- go theorems based on classical general relativity and various hybrid theories serving as steps along the way towards quantum gravity. Despite the effort put into these no-go theorems, there is no widely accepted definition of a time (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • (1 other version)Time machines.John Earman - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Hypercomputation and the Physical Church‐Turing Thesis.Paolo Cotogno - 2003 - British Journal for the Philosophy of Science 54 (2):181-223.
    A version of the Church-Turing Thesis states that every effectively realizable physical system can be simulated by Turing Machines (‘Thesis P’). In this formulation the Thesis appears to be an empirical hypothesis, subject to physical falsification. We review the main approaches to computation beyond Turing definability (‘hypercomputation’): supertask, non-well-founded, analog, quantum, and retrocausal computation. The conclusions are that these models reduce to supertasks, i.e. infinite computation, and that even supertasks are no solution for recursive incomputability. This yields that the realization (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • The Direction of Time.Steven F. Savitt - 1996 - British Journal for the Philosophy of Science 47 (3):347-370.
    The aim of this essay is to introduce philosophers of science to some recent philosophical discussions of the nature and origin of the direction of time. The essay is organized around books by Hans Reichenbach, Paul Horwich, and Huw Price. I outline their major arguments and treat certain critical points in detail. I speculate at the end about the ways in which the subject may continue to develop and in which it may connect with other areas of philosophy.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Tolerance for spacetime singularities.John Earman - 1996 - Foundations of Physics 26 (5):623-640.
    A common reaction to the Penrose-Hawking singularity theorems is that Einstein's general theory of relativity contains the seeds of its own destruction. This attitude is critically examined. A more tolerant attitude toward spacetime singularities is recommended.
    Download  
     
    Export citation  
     
    Bookmark   13 citations