Switch to: References

Citations of:

Quantum Bayesianism Assessed

The Monist 102 (4):403-423 ()

Add citations

You must login to add citations.
  1. The Positive Argument Against Scientific Realism.Florian J. Boge - 2023 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 54 (4):535-566.
    Putnam coined what is now known as the no miracles argument “[t]he positive argument for realism”. In its opposition, he put an argument that by his own standards counts as negative. But are there no positive arguments against scientific realism? I believe that there is such an argument that has figured in the back of much of the realism-debate, but, to my knowledge, has nowhere been stated and defended explicitly. This is an argument from the success of quantum physics to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A No-Go Result for QBism.Shan Gao - 2021 - Foundations of Physics 51 (5):1-6.
    In QBism the wave function does not represent an element of physical reality external to the agent, but represent an agent’s personal probability assignments, reflecting his subjective degrees of belief about the future content of his experience. In this paper, I argue that this view of the wave function is not consistent with protective measurements. The argument does not rely on the realist assumption of the ψ-ontology theorems, namely the existence of the underlying ontic state of a quantum system.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • QBism and the limits of scientific realism.David Glick - 2021 - European Journal for Philosophy of Science 11 (2):1-19.
    QBism is an agent-centered interpretation of quantum theory. It rejects the notion that quantum theory provides a God’s eye description of reality and claims instead that it imposes constraints on agents’ subjective degrees of belief. QBism’s emphasis on subjective belief has led critics to dismiss it as antirealism or instrumentalism, or even, idealism or solipsism. The aim of this paper is to consider the relation of QBism to scientific realism. I argue that while QBism is an unhappy fit with a (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The Relation between Credence and Chance: Lewis' "Principal Principle" Is a Theorem of Quantum Probability Theory.John Earman - unknown
    David Lewis' "Principal Principle" is a purported principle of rationality connecting credence and objective chance. Almost all of the discussion of the Principal Principle in the philosophical literature assumes classical probability theory, which is unfortunate since the theory of modern physics that, arguably, speaks most clearly of objective chance is the quantum theory, and quantum probabilities are not classical probabilities. Given the generally accepted updating rule for quantum probabilities, there is a straight forward sense in which the Principal Principle is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Realism Without Interphenomena: Reichenbach’s Cube, Sober’s Evidential Realism, and Quantum.Florian J. Boge - 2020 - International Studies in the Philosophy of Science 33 (4):231-246.
    In ‘Reichenbach's cubical universe and the problem of the external world’, Elliott Sober attempts a refutation of solipsism à la Reichenbach. I here contrast Sober's line of argument with observati...
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum reality: A pragmaticized neo-Kantian approach.Florian J. Boge - 2021 - Studies in History and Philosophy of Science Part A 87 (C):101-113.
    Despite remarkable efforts, it remains notoriously difficult to equip quantum theory with a coherent ontology. Hence, Healey (2017, 12) has recently suggested that ‘‘quantum theory has no physical ontology and states no facts about physical objects or events’’, and Fuchs et al. (2014, 752) similarly hold that ‘‘quantum mechanics itself does not deal directly with the objective world’’. While intriguing, these positions either raise the question of how talk of ‘physical reality’ can even remain meaningful, or they must ultimately embrace (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Role of Quantum Jumps in Quantum Ontology.Rainer Dick - 2023 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 54 (4):567-597.
    Quantum theory determines the evolution of quantum states between quantum jumps. Quantum theory also allows us to calculate rates of quantum jumps and, on a probabilistic level, the outcomes of those quantum jumps. Both quantum jumps and the continuous evolution of quantum states are important in the time evolution of quantum systems, and the scattering matrix ties those seemingly disparate concepts together. Indeed, quantum jumps are so essential in quantum dynamics that we should refocus discussion of a quantum ontology on (...)
    Download  
     
    Export citation  
     
    Bookmark