Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Completeness and Categoricity. Part I: Nineteenth-century Axiomatics to Twentieth-century Metalogic.Steve Awodey & Erich H. Reck - 2002 - History and Philosophy of Logic 23 (1):1-30.
    This paper is the first in a two-part series in which we discuss several notions of completeness for systems of mathematical axioms, with special focus on their interrelations and historical origins in the development of the axiomatic method. We argue that, both from historical and logical points of view, higher-order logic is an appropriate framework for considering such notions, and we consider some open questions in higher-order axiomatics. In addition, we indicate how one can fruitfully extend the usual set-theoretic semantics (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • (1 other version)Completeness and Categoricity: 19th Century Axiomatics to 21st Century Senatics.Steve Awodey & Erich H. Reck - 2002 - History and Philosophy of Logic 23 (1):1-30.
    Steve Awodey and Erich H. Reck. Completeness and Categoricity: 19th Century Axiomatics to 21st Century Senatics.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Completeness and categoricty, part II: 20th century metalogic to 21st century semantics.Steve Awodey & Erich H. Reck - 2002 - History and Philosophy of Logic 23 (1):77-92.
    This paper is the second in a two-part series in which we discuss several notions of completeness for systems of mathematical axioms, with special focus on their interrelations and historical origins in the development of the axiomatic method. We argue that, both from historical and logical points of view, higher-order logic is an appropriate framework for considering such notions, and we consider some open questions in higher-order axiomatics. In addition, we indicate how one can fruitfully extend the usual set-theoretic semantics (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • A Cantorian argument against infinitesimals.Matthew E. Moore - 2002 - Synthese 133 (3):305 - 330.
    In 1887 Georg Cantor gave an influential but cryptic proof of theimpossibility of infinitesimals. I first give a reconstruction ofCantor's argument which relies mainly on traditional assumptions fromEuclidean geometry, together with elementary results of Cantor's ownset theory. I then apply the reconstructed argument to theinfinitesimals of Abraham Robinson's nonstandard analysis. Thisbrings out the importance for the argument of an assumption I call theChain Thesis. Doubts about the Chain Thesis are seen to render thereconstructed argument inconclusive as an attack on the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Axiomatizing Changing Conceptions of the Geometric Continuum II: Archimedes-Descartes-Hilbert-Tarski†.John T. Baldwin - 2019 - Philosophia Mathematica 27 (1):33-60.
    In Part I of this paper we argued that the first-order systems HP5 and EG are modest complete descriptive axiomatization of most of Euclidean geometry. In this paper we discuss two further modest complete descriptive axiomatizations: Tarksi’s for Cartesian geometry and new systems for adding $$\pi$$. In contrast we find Hilbert’s full second-order system immodest for geometrical purposes but appropriate as a foundation for mathematical analysis.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Hilbert's axiomatic method and Carnap's general axiomatics.Michael Stöltzner - 2015 - Studies in History and Philosophy of Science Part A 53:12-22.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Carnap on extremal axioms, "completeness of the models," and categoricity.Georg Schiemer - 2012 - Review of Symbolic Logic 5 (4):613-641.
    This paper provides a historically sensitive discussion of Carnaps theory will be assessed with respect to two interpretive issues. The first concerns his mathematical sources, that is, the mathematical axioms on which his extremal axioms were based. The second concerns Carnapcompleteness of the modelss different attempts to explicate the extremal properties of a theory and puts his results in context with related metamathematical research at the time.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • On the meaning of Hilbert's consistency problem (paris, 1900).Enrico Moriconi - 2003 - Synthese 137 (1-2):129 - 139.
    The theory that ``consistency implies existence'' was put forward by Hilbert on various occasions around the start of the last century, and it was strongly and explicitly emphasized in his correspondence with Frege. Since (Gödel's) completeness theorem, abstractly speaking, forms the basis of this theory, it has become common practice to assume that Hilbert took for granted the semantic completeness of second order logic. In this paper I maintain that this widely held view is untrue to the facts, and that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bridging the gap between analytic and synthetic geometry: Hilbert’s axiomatic approach.Eduardo N. Giovannini - 2016 - Synthese 193 (1):31-70.
    The paper outlines an interpretation of one of the most important and original contributions of David Hilbert’s monograph Foundations of Geometry , namely his internal arithmetization of geometry. It is claimed that Hilbert’s profound interest in the problem of the introduction of numbers into geometry responded to certain epistemological aims and methodological concerns that were fundamental to his early axiomatic investigations into the foundations of elementary geometry. In particular, it is shown that a central concern that motivated Hilbert’s axiomatic investigations (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes.Philip Ehrlich - 2006 - Archive for History of Exact Sciences 60 (1):1-121.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • An Essay in Honor of Adolf Grünbaum’s Ninetieth Birthday: A Reexamination of Zeno’s Paradox of Extension.Philip Ehrlich - 2014 - Philosophy of Science 81 (4):654-675.
    We suggest that, far from establishing an inconsistency in the standard theory of the geometrical linear continuum, Zeno’s Paradox of Extension merely establishes an inconsistency between the standard theory of geometrical magnitude and a misguided system of length measurement. We further suggest that our resolution of Zeno’s paradox is superior to Adolf Grünbaum’s now standard resolution based on Lebesgue measure theory.
    Download  
     
    Export citation  
     
    Bookmark   2 citations