Switch to: References

Add citations

You must login to add citations.
  1. Fraenkel-Carnap properties.G. Au George Weaver - 2005 - Mathematical Logic Quarterly 51 (3):285.
    In the 1920's Fraenkel and Carnap raised the question of whether or not every finitely axiomatizable semantically complete theory formulated in the theory of types is categorical. Partial answers to this and a related question are presented for theories formulated in second-order logic.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Concept Formation and Scientific Objectivity: Weyl’s Turn against Husserl.Iulian D. Toader - 2013 - Hopos: The Journal of the International Society for the History of Philosophy of Science 3 (2):281-305.
    This paper argues that Weyl's view that scientific objectivity requires that concepts be freely created, i.e., introduced via Hilbert-style axiomatizations, led him to abandon the phenomenological view of objectivity.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Book reviews. [REVIEW]John Symons - 2008 - Studia Logica 89 (2):285-289.
    Download  
     
    Export citation  
     
    Bookmark  
  • Completeness and Categoricity. Part I: Nineteenth-century Axiomatics to Twentieth-century Metalogic.Steve Awodey & Erich H. Reck - 2002 - History and Philosophy of Logic 23 (1):1-30.
    This paper is the first in a two-part series in which we discuss several notions of completeness for systems of mathematical axioms, with special focus on their interrelations and historical origins in the development of the axiomatic method. We argue that, both from historical and logical points of view, higher-order logic is an appropriate framework for considering such notions, and we consider some open questions in higher-order axiomatics. In addition, we indicate how one can fruitfully extend the usual set-theoretic semantics (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • A Note on Intended and Standard Models.Jerzy Pogonowski - 2020 - Studia Humana 9 (3-4):131-139.
    This note discusses some problems concerning intended, standard, and nonstandard models of mathematical theories. We pay attention to the role of extremal axioms in attempts at a unique characterization of the intended models. We recall also Jan Woleński’s views on these issues.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Second-order characterizable cardinals and ordinals.Benjamin R. George - 2006 - Studia Logica 84 (3):425 - 449.
    The notions of finite and infinite second-order characterizability of cardinal and ordinal numbers are developed. Several known results for the case of finite characterizability are extended to infinite characterizability, and investigations of the second-order theory of ordinals lead to some observations about the Fraenkel-Carnap question for well-orders and about the relationship between ordinal characterizability and ordinal arithmetic. The broader significance of cardinal characterizability and the relationships between different notions of characterizability are also discussed.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Second-Order Characterizable Cardinals and Ordinals.Benjamin R. George - 2006 - Studia Logica 84 (3):425-449.
    The notions of finite and infinite second-order characterizability of cardinal and ordinal numbers are developed. Several known results for the case of finite characterizability are extended to infinite characterizability, and investigations of the second-order theory of ordinals lead to some observations about the Fraenkel-Carnap question for well-orders and about the relationship between ordinal characterizability and ordinal arithmetic. The broader significance of cardinal characterizability and the relationships between different notions of characterizability are also discussed.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Pasch entre Klein et Peano.Sébastien Gandon - 2005 - Dialogue 44 (4):653-692.
    RÉSUMÉ: Pasch est généralement considéré comme le premier à avoir proposé une axiomatisation de la géométrie. Mais ses Vorlesungen über neure Geometrie (1882) contiennent plusieurs éléments étrangers au paradigme hilbertien. Pasch soutient ainsi que la « géométrie élémentaire », dont il propose une axiomatisation complète, est une théorie empiriquement vraie. Les commentateurs considèrent généralement les différences entre la méthode de Pasch et celle qui deviendra standard après Hilbert comme autant de défauts affectant une pensée encore inaboutie. Notre but consiste au (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On arbitrary sets and ZFC.José Ferreirós - 2011 - Bulletin of Symbolic Logic 17 (3):361-393.
    Set theory deals with the most fundamental existence questions in mathematics—questions which affect other areas of mathematics, from the real numbers to structures of all kinds, but which are posed as dealing with the existence of sets. Especially noteworthy are principles establishing the existence of some infinite sets, the so-called “arbitrary sets.” This paper is devoted to an analysis of the motivating goal of studying arbitrary sets, usually referred to under the labels of quasi-combinatorialism or combinatorial maximality. After explaining what (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Peano’s structuralism and the birth of formal languages.Joan Bertran-San-Millán - 2022 - Synthese 200 (4):1-34.
    Recent historical studies have investigated the first proponents of methodological structuralism in late nineteenth-century mathematics. In this paper, I shall attempt to answer the question of whether Peano can be counted amongst the early structuralists. I shall focus on Peano’s understanding of the primitive notions and axioms of geometry and arithmetic. First, I shall argue that the undefinability of the primitive notions of geometry and arithmetic led Peano to the study of the relational features of the systems of objects that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Completeness: From Husserl to Carnap.Víctor Aranda - 2022 - Logica Universalis 16 (1):57-83.
    In his Doppelvortrag, Edmund Husserl introduced two concepts of “definiteness” which have been interpreted as a vindication of his role in the history of completeness. Some commentators defended that the meaning of these notions should be understood as categoricity, while other scholars believed that it is closer to syntactic completeness. A detailed study of the early twentieth-century axiomatics and Husserl’s Doppelvortrag shows, however, that many concepts of completeness were conflated as equivalent. Although “absolute definiteness” was principally an attempt to characterize (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Methodological Roles of Tolerance and Conventionalism in the Philosophy of Mathematics: Reconsidering Carnap's Logic of Science.Emerson P. Doyle - 2014 - Dissertation, University of Western Ontario
    This dissertation makes two primary contributions. The first three chapters develop an interpretation of Carnap's Meta-Philosophical Program which places stress upon his methodological analysis of the sciences over and above the Principle of Tolerance. Most importantly, I suggest, is that Carnap sees philosophy as contiguous with science—as a part of the scientific enterprise—so utilizing the very same methods and subject to the same limitations. I argue that the methodological reforms he suggests for philosophy amount to philosophy as the explication of (...)
    Download  
     
    Export citation  
     
    Bookmark