Switch to: References

Add citations

You must login to add citations.
  1. Quantum Physics, Digital Computers, and Life from a Holistic Perspective.George F. R. Ellis - 2024 - Foundations of Physics 54 (4):1-29.
    Quantum physics is a linear theory, so it is somewhat puzzling that it can underlie very complex systems such as digital computers and life. This paper investigates how this is possible. Physically, such complex systems are necessarily modular hierarchical structures, with a number of key features. Firstly, they cannot be described by a single wave function: only local wave functions can exist, rather than a single wave function for a living cell, a cat, or a brain. Secondly, the quantum to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Physical Time and Human Time.George F. R. Ellis - 2023 - Foundations of Physics 54 (1):1-17.
    This paper is a comment on both Bunamano and Rovelli (Bridging the neuroscience and physics of time arXiv:2110.01976. (2022)) and Gruber et al. (in Front. Psychol. Hypothesis Theory, 2022) and which discuss the relation between physical time and human time. I claim here, contrary to many views discussed there, that there is no foundational conflict between the way physics views the passage of time and the way the mind/brain perceives it. The problem rather resides in a number of misconceptions leading (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Emergence in Solid State Physics and Biology.George F. R. Ellis - 2020 - Foundations of Physics 50 (10):1098-1139.
    There has been much controversy over weak and strong emergence in physics and biology. As pointed out by Phil Anderson in many papers, the existence of broken symmetries is the key to emergence of properties in much of solid state physics. By carefully distinguishing between different types of symmetry breaking and tracing the relation between broken symmetries at micro and macro scales, I demonstrate that the emergence of the properties of semiconductors is a case of strong emergence. This is due (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Top-Down Causation Without Levels.Jan Voosholz - 2021 - In Jan Voosholz & Markus Gabriel (eds.), Top-Down Causation and Emergence. Cham: Springer Verlag. pp. 269-296.
    The paper addresses a question concerning George Ellis’s theory of top-down causation by considering a challenge to the “level-picture of nature” which he employs as a foundational element in his theory. According to the level-picture, nature is ordered by distinct and finitely many levels, each characterised by its own types of entities, relations, laws and principles of behavior, and causal relations to their respective neighbouring top- and bottom-level. The branching hierarchy that results from this picture enables Ellis to build his (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Emergence of Time.George F. R. Ellis & Barbara Drossel - 2020 - Foundations of Physics 50 (3):161-190.
    Microphysical laws are time reversible, but macrophysics, chemistry and biology are not. This paper explores how this asymmetry arises due to the cosmological context, where a non-local Direction of Time is imposed by the expansion of the universe. This situation is best represented by an Evolving Block Universe, where local arrows of time emerge in concordance with the Direction of Time because a global Past Condition results in the Second Law of Thermodynamics pointing to the future. At the quantum level, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Causal Closure of Physics in Real World Contexts.George F. R. Ellis - 2020 - Foundations of Physics 50 (10):1057-1097.
    The causal closure of physics is usually discussed in a context free way. Here I discuss it in the context of engineering systems and biology, where strong emergence takes place due to a combination of upwards emergence and downwards causation. Firstly, I show that causal closure is strictly limited in terms of spatial interactions because these are cases that are of necessity strongly interacting with the environment. Effective Spatial Closure holds ceteris parabus, and can be violated by Black Swan Events. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations