Switch to: References

Citations of:

Five critical modal systems

Theoria 43 (1):52-60 (1977)

Add citations

You must login to add citations.
  1. Pretabular varieties of modal algebras.W. J. Blok - 1980 - Studia Logica 39 (2-3):101 - 124.
    We study modal logics in the setting of varieties of modal algebras. Any variety of modal algebras generated by a finite algebra — such, a variety is called tabular — has only finitely many subvarieties, i.e. is of finite height. The converse does not hold in general. It is shown that the converse does hold in the lattice of varieties of K4-algebras. Hence the lower part of this lattice consists of tabular varieties only. We proceed to show that there is (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Varieties of monadic Heyting algebras. Part III.Guram Bezhanishvili - 2000 - Studia Logica 64 (2):215-256.
    This paper is the concluding part of [1] and [2], and it investigates the inner structure of the lattice (MHA) of all varieties of monadic Heyting algebras. For every n , we introduce and investigate varieties of depth n and cluster n, and present two partitions of (MHA), into varieties of depth n, and into varieties of cluster n. We pay a special attention to the lower part of (MHA) and investigate finite and critical varieties of monadic Heyting algebras in (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Some Results on Modal Axiomatization and Definability for Topological Spaces.Guram Bezhanishvili, Leo Esakia & David Gabelaia - 2005 - Studia Logica 81 (3):325-355.
    We consider two topological interpretations of the modal diamond—as the closure operator (C-semantics) and as the derived set operator (d-semantics). We call the logics arising from these interpretations C-logics and d-logics, respectively. We axiomatize a number of subclasses of the class of nodec spaces with respect to both semantics, and characterize exactly which of these classes are modally definable. It is demonstrated that the d-semantics is more expressive than the C-semantics. In particular, we show that the d-logics of the six (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Connected modal logics.Guram Bezhanishvili & David Gabelaia - 2011 - Archive for Mathematical Logic 50 (3-4):287-317.
    We introduce the concept of a connected logic (over S4) and show that each connected logic with the finite model property is the logic of a subalgebra of the closure algebra of all subsets of the real line R, thus generalizing the McKinsey-Tarski theorem. As a consequence, we obtain that each intermediate logic with the finite model property is the logic of a subalgebra of the Heyting algebra of all open subsets of R.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Completeness of S4 with respect to the real line: revisited.Gurman Bezhanishvili & Mai Gehrke - 2005 - Annals of Pure and Applied Logic 131 (1-3):287-301.
    We prove that S4 is complete with respect to Boolean combinations of countable unions of convex subsets of the real line, thus strengthening a 1944 result of McKinsey and Tarski 45 141). We also prove that the same result holds for the bimodal system S4+S5+C, which is a strengthening of a 1999 result of Shehtman 369).
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Completeness of S4 with respect to the real line: revisited.Guram Bezhanishvili & Mai Gehrke - 2004 - Annals of Pure and Applied Logic 131 (1-3):287-301.
    We prove that S4 is complete with respect to Boolean combinations of countable unions of convex subsets of the real line, thus strengthening a 1944 result of McKinsey and Tarski 45 141). We also prove that the same result holds for the bimodal system S4+S5+C, which is a strengthening of a 1999 result of Shehtman 369).
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (5 other versions)Foreword.Lev Beklemishev, Guram Bezhanishvili, Daniele Mundici & Yde Venema - 2012 - Studia Logica 100 (1-2):1-7.
    Download  
     
    Export citation  
     
    Bookmark  
  • Unification in Pretabular Extensions of S4.Stepan I. Bashmakov - 2021 - Logica Universalis 15 (3):381-397.
    L.L. Maksimova and L. Esakia, V. Meskhi showed that the modal logic \ has exactly 5 pretabular extensions PM1–PM5. In this paper, we study the problem of unification for all given logics. We showed that PM2 and PM3 have finitary, and PM1, PM4, PM5 have unitary types of unification. Complete sets of unifiers in logics are described.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The structure of lattices of subframe logics.Frank Wolter - 1997 - Annals of Pure and Applied Logic 86 (1):47-100.
    This paper investigates the structure of lattices of normal mono- and polymodal subframelogics, i.e., those modal logics whose frames are closed under a certain type of substructures. Nearly all basic modal logics belong to this class. The main lattice theoretic tool applied is the notion of a splitting of a complete lattice which turns out to be connected with the “geometry” and “topology” of frames, with Kripke completeness and with axiomatization problems. We investigate in detail subframe logics containing K4, those (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • (1 other version)Bounded Properties in Modal Logic.George F. Schumm - 1981 - Mathematical Logic Quarterly 27 (13‐14):197-200.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Bounded Properties in Modal Logic.George F. Schumm - 1981 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 27 (13-14):197-200.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Willem Blok and Modal Logic.W. Rautenberg, M. Zakharyaschev & F. Wolter - 2006 - Studia Logica 83 (1):15-30.
    We present our personal view on W.J. Blok's contribution to modal logic.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (5 other versions)Foreword.Daniele Mundici - 1998 - Studia Logica 61 (1):1-1.
    Download  
     
    Export citation  
     
    Bookmark  
  • Finitary unification in locally tabular modal logics characterized.Wojciech Dzik, Sławomir Kost & Piotr Wojtylak - 2022 - Annals of Pure and Applied Logic 173 (4):103072.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Strongly decidable properties of modal and intuitionistic calculi.L. Maksimova - 2000 - Logic Journal of the IGPL 8 (6):797-819.
    Let a logical propositional calculus L0 be given. We consider arbitrary extensions of L0 by adding finitely many new axiom schemes and rules of inference. We say that a property of P of logical calculi is strongly decidable over L0 if there is an algorithm which for any finite system Rul of axiom schemes and rules of inference decides whether the system L0 + Rul has the property P or not. We consider only so-called structural rules of inference which are (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Undecidability of modal and intermediate first-order logics with two individual variables.D. M. Gabbay & V. B. Shehtman - 1993 - Journal of Symbolic Logic 58 (3):800-823.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On Pretabular Extensions of Relevance Logic.Asadollah Fallahi & James Gordon Raftery - 2024 - Studia Logica 112 (5):967-985.
    We exhibit infinitely many semisimple varieties of semilinear De Morgan monoids (and likewise relevant algebras) that are not tabular, but which have only tabular proper subvarieties. Thus, the extension of relevance logic by the axiom \((p\rightarrow q)\vee (q\rightarrow p)\) has infinitely many pretabular axiomatic extensions, regardless of the presence or absence of Ackermann constants.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Second Pretabular Classical Relevance Logic.Asadollah Fallahi - 2018 - Studia Logica 106 (1):191-214.
    Pretabular logics are those that lack finite characteristic matrices, although all of their normal proper extensions do have some finite characteristic matrix. Although for Anderson and Belnap’s relevance logic R, there exists an uncountable set of pretabular extensions :1249–1270, 2008), for the classical relevance logic \\rightarrow B\}\) there has been known so far a pretabular extension: \. In Section 1 of this paper, we introduce some history of pretabularity and some relevance logics and their algebras. In Section 2, we introduce (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On Pretabular Logics in NExtK4 (Part I).Shan Du & Hongkui Kang - 2014 - Studia Logica 102 (3):499-523.
    This paper partly answers the question “what a frame may be exactly like when it characterizes a pretabular logic in NExtK4”. We prove the pretabularity crieria for the logics of finite depth in NExtK4. In order to find out the criteria, we create two useful concepts—“pointwise reduction” and “invariance under pointwise reductions”, which will remain important in dealing with the case of infinite depth.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Dugundji’s Theorem Revisited.Marcelo E. Coniglio & Newton M. Peron - 2014 - Logica Universalis 8 (3-4):407-422.
    In 1940 Dugundji proved that no system between S1 and S5 can be characterized by finite matrices. Dugundji’s result forced the development of alternative semantics, in particular Kripke’s relational semantics. The success of this semantics allowed the creation of a huge family of modal systems. With few adaptations, this semantics can characterize almost the totality of the modal systems developed in the last five decades. This semantics however has some limits. Two results of incompleteness showed that not every modal logic (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Modal companions of intermediate propositional logics.Alexander Chagrov & Michael Zakharyashchev - 1992 - Studia Logica 51 (1):49 - 82.
    This paper is a survey of results concerning embeddings of intuitionistic propositional logic and its extensions into various classical modal systems.
    Download  
     
    Export citation  
     
    Bookmark   21 citations