Switch to: References

Add citations

You must login to add citations.
  1. Bounded arithmetic, proof complexity and two papers of Parikh.Samuel R. Buss - 1999 - Annals of Pure and Applied Logic 96 (1-3):43-55.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Note on the Length of Proofs.Tsuyoshi Yukami - 1994 - Annals of the Japan Association for Philosophy of Science 8 (4):203-209.
    Download  
     
    Export citation  
     
    Bookmark  
  • Algorithmic Structuring of Cut-free Proofs.Matthias Baaz & Richard Zach - 1993 - In Egon Börger, Gerhard Jäger, Hans Kleine Büning, Simone Martini & Michael M. Richter (eds.), Computer Science Logic. CSL’92, San Miniato, Italy. Selected Papers. Springer. pp. 29–42.
    The problem of algorithmic structuring of proofs in the sequent calculi LK and LKB ( LK where blocks of quantifiers can be introduced in one step) is investigated, where a distinction is made between linear proofs and proofs in tree form. In this framework, structuring coincides with the introduction of cuts into a proof. The algorithmic solvability of this problem can be reduced to the question of k-l-compressibility: "Given a proof of length k , and l ≤ k : Is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The undecidability of k-provability.Samuel R. Buss - 1991 - Annals of Pure and Applied Logic 53 (1):75-102.
    Buss, S.R., The undecidability of k-provability, Annals of Pure and Applied Logic 53 75-102. The k-provability problem is, given a first-order formula ø and an integer k, to determine if ø has a proof consisting of k or fewer lines . This paper shows that the k-provability problem for the sequent calculus is undecidable. Indeed, for every r.e. set X there is a formula ø and an integer k such that for all n,ø has a proof of k sequents if (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • k-Provability in $$\hbox {PA}$$ PA.Paulo Guilherme Santos & Reinhard Kahle - 2021 - Logica Universalis 15 (4):477-516.
    We study the decidability of k-provability in \—the relation ‘being provable in \ with at most k steps’—and the decidability of the proof-skeleton problem—the problem of deciding if a given formula has a proof that has a given skeleton. The decidability of k-provability for the usual Hilbert-style formalisation of \ is still an open problem, but it is known that the proof-skeleton problem is undecidable for that theory. Using new methods, we present a characterisation of some numbers k for which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Interpolants, cut elimination and flow graphs for the propositional calculus.Alessandra Carbone - 1997 - Annals of Pure and Applied Logic 83 (3):249-299.
    We analyse the structure of propositional proofs in the sequent calculus focusing on the well-known procedures of Interpolation and Cut Elimination. We are motivated in part by the desire to understand why a tautology might be ‘hard to prove’. Given a proof we associate to it a logical graph tracing the flow of formulas in it . We show some general facts about logical graphs such as acyclicity of cut-free proofs and acyclicity of contraction-free proofs , and we give a (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The undecidability of k-provability.Samuel Buss - 1991 - Annals of Pure and Applied Logic 53 (1):75-102.
    Buss, S.R., The undecidability of k-provability, Annals of Pure and Applied Logic 53 75-102. The k-provability problem is, given a first-order formula ø and an integer k, to determine if ø has a proof consisting of k or fewer lines. This paper shows that the k-provability problem for the sequent calculus is undecidable. Indeed, for every r.e. set X there is a formula ø and an integer k such that for all n,ø has a proof of k sequents if and (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • On gödel's theorems on lengths of proofs I: Number of lines and speedup for arithmetics.Samuel R. Buss - 1994 - Journal of Symbolic Logic 59 (3):737-756.
    This paper discusses lower bounds for proof length, especially as measured by number of steps (inferences). We give the first publicly known proof of Gödel's claim that there is superrecursive (in fact. unbounded) proof speedup of (i + 1)st-order arithmetic over ith-order arithmetic, where arithmetic is formalized in Hilbert-style calculi with + and · as function symbols or with the language of PRA. The same results are established for any weakly schematic formalization of higher-order logic: this allows all tautologies as (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations