Switch to: References

Add citations

You must login to add citations.
  1. Understanding in mathematics: The case of mathematical proofs.Yacin Hamami & Rebecca Lea Morris - 2024 - Noûs 58 (4):1073-1106.
    Although understanding is the object of a growing literature in epistemology and the philosophy of science, only few studies have concerned understanding in mathematics. This essay offers an account of a fundamental form of mathematical understanding: proof understanding. The account builds on a simple idea, namely that understanding a proof amounts to rationally reconstructing its underlying plan. This characterization is fleshed out by specifying the relevant notion of plan and the associated process of rational reconstruction, building in part on Bratman's (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Who's Afraid of Mathematical Diagrams?Silvia De Toffoli - 2023 - Philosophers' Imprint 23 (1).
    Mathematical diagrams are frequently used in contemporary mathematics. They are, however, widely seen as not contributing to the justificatory force of proofs: they are considered to be either mere illustrations or shorthand for non-diagrammatic expressions. Moreover, when they are used inferentially, they are seen as threatening the reliability of proofs. In this paper, I examine certain examples of diagrams that resist this type of dismissive characterization. By presenting two diagrammatic proofs, one from topology and one from algebra, I show that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • What are mathematical diagrams?Silvia De Toffoli - 2022 - Synthese 200 (2):1-29.
    Although traditionally neglected, mathematical diagrams have recently begun to attract attention from philosophers of mathematics. By now, the literature includes several case studies investigating the role of diagrams both in discovery and justification. Certain preliminary questions have, however, been mostly bypassed. What are diagrams exactly? Are there different types of diagrams? In the scholarly literature, the term “mathematical diagram” is used in diverse ways. I propose a working definition that carves out the phenomena that are of most importance for a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • ‘Chasing’ the diagram—the use of visualizations in algebraic reasoning.Silvia de Toffoli - 2017 - Review of Symbolic Logic 10 (1):158-186.
    The aim of this article is to investigate the roles of commutative diagrams (CDs) in a specific mathematical domain, and to unveil the reasons underlying their effectiveness as a mathematical notation; this will be done through a case study. It will be shown that CDs do not depict spatial relations, but represent mathematical structures. CDs will be interpreted as a hybrid notation that goes beyond the traditional bipartition of mathematical representations into diagrammatic and linguistic. It will be argued that one (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Perceiving Necessity.Catherine Legg & James Franklin - 2017 - Pacific Philosophical Quarterly 98 (3).
    In many diagrams one seems to perceive necessity – one sees not only that something is so, but that it must be so. That conflicts with a certain empiricism largely taken for granted in contemporary philosophy, which believes perception is not capable of such feats. The reason for this belief is often thought well-summarized in Hume's maxim: ‘there are no necessary connections between distinct existences’. It is also thought that even if there were such necessities, perception is too passive or (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Diagrams in Mathematics.Carlo Cellucci - 2019 - Foundations of Science 24 (3):583-604.
    In the last few decades there has been a revival of interest in diagrams in mathematics. But the revival, at least at its origin, has been motivated by adherence to the view that the method of mathematics is the axiomatic method, and specifically by the attempt to fit diagrams into the axiomatic method, translating particular diagrams into statements and inference rules of a formal system. This approach does not deal with diagrams qua diagrams, and is incapable of accounting for the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)From Euclidean geometry to knots and nets.Brendan Larvor - 2017 - Synthese:1-22.
    This paper assumes the success of arguments against the view that informal mathematical proofs secure rational conviction in virtue of their relations with corresponding formal derivations. This assumption entails a need for an alternative account of the logic of informal mathematical proofs. Following examination of case studies by Manders, De Toffoli and Giardino, Leitgeb, Feferman and others, this paper proposes a framework for analysing those informal proofs that appeal to the perception or modification of diagrams or to the inspection or (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Plans and planning in mathematical proofs.Yacin Hamami & Rebecca Lea Morris - 2020 - Review of Symbolic Logic 14 (4):1030-1065.
    In practice, mathematical proofs are most often the result of careful planning by the agents who produced them. As a consequence, each mathematical proof inherits a plan in virtue of the way it is produced, a plan which underlies its “architecture” or “unity”. This paper provides an account of plans and planning in the context of mathematical proofs. The approach adopted here consists in looking for these notions not in mathematical proofs themselves, but in the agents who produced them. The (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Mathematical Inference and Logical Inference.Yacin Hamami - 2018 - Review of Symbolic Logic 11 (4):665-704.
    The deviation of mathematical proof—proof in mathematical practice—from the ideal of formal proof—proof in formal logic—has led many philosophers of mathematics to reconsider the commonly accepted view according to which the notion of formal proof provides an accurate descriptive account of mathematical proof. This, in turn, has motivated a search for alternative accounts of mathematical proof purporting to be more faithful to the reality of mathematical practice. Yet, in order to develop and evaluate such alternative accounts, it appears as a (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Relationship of Derivations in Artificial Languages to Ordinary Rigorous Mathematical Proof.J. Azzouni - 2013 - Philosophia Mathematica 21 (2):247-254.
    The relationship is explored between formal derivations, which occur in artificial languages, and mathematical proof, which occurs in natural languages. The suggestion that ordinary mathematical proofs are abbreviations or sketches of formal derivations is presumed false. The alternative suggestion that the existence of appropriate derivations in formal logical languages is a norm for ordinary rigorous mathematical proof is explored and rejected.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)From Euclidean geometry to knots and nets.Brendan Larvor - 2019 - Synthese 196 (7):2715-2736.
    This paper assumes the success of arguments against the view that informal mathematical proofs secure rational conviction in virtue of their relations with corresponding formal derivations. This assumption entails a need for an alternative account of the logic of informal mathematical proofs. Following examination of case studies by Manders, De Toffoli and Giardino, Leitgeb, Feferman and others, this paper proposes a framework for analysing those informal proofs that appeal to the perception or modification of diagrams or to the inspection or (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Role of Imagination and Anticipation in the Acceptance of Computability Proofs: A Challenge to the Standard Account of Rigor.Keith Weber - 2022 - Philosophia Mathematica 30 (3):343-368.
    In a 2022 paper, Hamami claimed that the orthodox view in mathematics is that a proof is rigorous if it can be translated into a derivation. Hamami then developed a descriptive account that explains how mathematicians check proofs for rigor in this sense and how they develop the capacity to do so. By exploring introductory texts in computability theory, we demonstrate that Hamami’s descriptive account does not accord with actual mathematical practice with respect to computability theory. We argue instead for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The role of syntactic representations in set theory.Keith Weber - 2019 - Synthese 198 (Suppl 26):6393-6412.
    In this paper, we explore the role of syntactic representations in set theory. We highlight a common inferential scheme in set theory, which we call the Syntactic Representation Inferential Scheme, in which the set theorist infers information about a concept based on the way that concept can be represented syntactically. However, the actual syntactic representation is only indicated, not explicitly provided. We consider this phenomenon in relation to the derivation indicator position that asserts that the ordinary proofs given in mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Contemporary Practice of Philosophy of Mathematics.Colin Jakob Rittberg - 2019 - Acta Baltica Historiae Et Philosophiae Scientiarum 7 (1):5-26.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the unreasonable reliability of mathematical inference.Brendan Philip Larvor - 2022 - Synthese 200 (4):1-16.
    In, Jeremy Avigad makes a novel and insightful argument, which he presents as part of a defence of the ‘Standard View’ about the relationship between informal mathematical proofs and their corresponding formal derivations. His argument considers the various strategies by means of which mathematicians can write informal proofs that meet mathematical standards of rigour, in spite of the prodigious length, complexity and conceptual difficulty that some proofs exhibit. He takes it that showing that and how such strategies work is a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Distinguiendo diagramas infinitos.José Seoane - 2018 - Metatheoria – Revista de Filosofía E Historia de la Ciencia 9:1--11.
    Download  
     
    Export citation  
     
    Bookmark