Citations of:
Add citations
You must login to add citations.


This paper assumes the success of arguments against the view that informal mathematical proofs secure rational conviction in virtue of their relations with corresponding formal derivations. This assumption entails a need for an alternative account of the logic of informal mathematical proofs. Following examination of case studies by Manders, De Toffoli and Giardino, Leitgeb, Feferman and others, this paper proposes a framework for analysing those informal proofs that appeal to the perception or modification of diagrams or to the inspection or (...) 

Criteria of acceptability for mathematical proofs are fielddependent. In topology, though not in most other domains, it is sometimes acceptable to appeal to visual intuition to support inferential steps. In previous work :829–842, 2014; Lolli, Panza, Venturi From logic to practice, Springer, Berlin, 2015; Larvor Mathematical cultures, Springer, Berlin, 2016) my coauthor and I aimed at spelling out how topological proofs work on their own terms, without appealing to formal proofs which might be associated with them. In this article, I (...) 

Representations, in particular diagrammatic representations, allegedly contribute to new insights in mathematics. Here I explore the phenomenon of a “free ride” and to what extent it occurs in mathematics. A free ride, according to Shimojima, is the property of some representations that whenever certain pieces of information have been represented then a new piece of consequential information can be read off for free. I will take Shimojima’s framework as a tool to analyse the occurrence and properties of them. I consider (...) 

The connection between understanding and explanation has recently been of interest to philosophers. Inglis and MejíaRamos (Synthese, 2019) propose that within mathematics, we should accept a functional account of explanation that characterizes explanations as those things that produce understanding. In this paper, I start with the assumption that this view of mathematical explanation is correct and consider what we can consequently learn about mathematical explanation. I argue that this view of explanation suggests that we should shift the question of explanation (...) 

Of all the demands that mathematics imposes on its practitioners, one of the most fundamental is that proofs ought to be correct. It has been common since the turn of the twentieth century to take correctness to be underwritten by the existence of formal derivations in a suitable axiomatic foundation, but then it is hard to see how this normative standard can be met, given the differences between informal proofs and formal derivations, and given the inherent fragility and complexity of (...) 

Mathematicians’ use of external representations, such as symbols and diagrams, constitutes an important focal point in current philosophical attempts to understand mathematical practice. In this paper, we add to this understanding by presenting and analyzing how research mathematicians use and interact with external representations. The empirical basis of the article consists of a qualitative interview study we conducted with active research mathematicians. In our analysis of the empirical material, we primarily used the empirically based frameworks provided by distributed cognition and (...) 



