Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Fragments of arithmetic.Wilfried Sieg - 1985 - Annals of Pure and Applied Logic 28 (1):33-71.
    We establish by elementary proof-theoretic means the conservativeness of two subsystems of analysis over primitive recursive arithmetic. The one subsystem was introduced by Friedman [6], the other is a strengthened version of a theory of Minc [14]; each has been shown to be of considerable interest for both mathematical practice and metamathematical investigations. The foundational significance of such conservation results is clear: they provide a direct finitist justification of the part of mathematical practice formalizable in these subsystems. The results are (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Odel's dialectica interpretation and its two-way stretch.Solomon Feferman - manuscript
    In 1958, G¨ odel published in the journal Dialectica an interpretation of intuitionistic number theory in a quantifier-free theory of functionals of finite type; this subsequently came to be known as G¨ odel’s functional or Dialectica interpretation. The article itself was written in German for an issue of that journal in honor of Paul Bernays’ 70th birthday. In 1965, Bernays told G¨.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Schema.John Corcoran - 2008 - Stanford Encyclopedia of Philosophy.
    -/- A schema (plural: schemata, or schemas), also known as a scheme (plural: schemes), is a linguistic template or pattern together with a rule for using it to specify a potentially infinite multitude of phrases, sentences, or arguments, which are called instances of the schema. Schemas are used in logic to specify rules of inference, in mathematics to describe theories with infinitely many axioms, and in semantics to give adequacy conditions for definitions of truth. -/- 1. What is a Schema? (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The machinery of consistency proofs.Mariko Yasugi - 1989 - Annals of Pure and Applied Logic 44 (1-2):139-152.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The non-constructive μ operator, fixed point theories with ordinals, and the bar rule.Thomas Strahm - 2000 - Annals of Pure and Applied Logic 104 (1-3):305-324.
    This paper deals with the proof theory of first-order applicative theories with non-constructive μ operator and a form of the bar rule, yielding systems of ordinal strength Γ0 and 20, respectively. Relevant use is made of fixed-point theories with ordinals plus bar rule.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • From hierarchies to well-foundedness.Dandolo Flumini & Kentaro Sato - 2014 - Archive for Mathematical Logic 53 (7-8):855-863.
    We highlight that the connection of well-foundedness and recursive definitions is more than just convenience. While the consequences of making well-foundedness a sufficient condition for the existence of hierarchies have been extensively studied, we point out that well-foundedness is a necessary condition for the existence of hierarchies e.g. that even in an intuitionistic setting α⊢wfwhereα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${_\alpha \vdash \mathsf{wf}\, {\rm where}\, _\alpha}$$\end{document} stands for the iteration of Π10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations