Switch to: References

Add citations

You must login to add citations.
  1. Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Abduction and Conjecturing in Mathematics.Ferdinando Arzarello, Valeria Andriano, Federica Olivero & Ornella Robutti - 1998 - Philosophica 61 (1):77-94.
    The logic of discovering and that of justifying have been a permanent source of debate in mathematics, because of their different and apparently contradictory features within the processes of production of mathematical sentences. In fact, a fundamental unity appears as soon as one investigates deeply the phenomenology of conjecturing and proving using concrete examples. In this paper it is shown that abduction, in the sense of Peirce, is an essential unifying activity, ruling such phenomena. Abduction is the major ingredient in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reliability of mathematical inference.Jeremy Avigad - 2020 - Synthese 198 (8):7377-7399.
    Of all the demands that mathematics imposes on its practitioners, one of the most fundamental is that proofs ought to be correct. It has been common since the turn of the twentieth century to take correctness to be underwritten by the existence of formal derivations in a suitable axiomatic foundation, but then it is hard to see how this normative standard can be met, given the differences between informal proofs and formal derivations, and given the inherent fragility and complexity of (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Gauge symmetry and the Theta vacuum.Richard Healey - 2009 - In Mauricio Suárez, Mauro Dorato & Miklós Rédei (eds.), EPSA Philosophical Issues in the Sciences: Launch of the European Philosophy of Science Association. Dordrecht, Netherland: Springer. pp. 105--116.
    According to conventional wisdom, local gauge symmetry is not a symmetry of nature, but an artifact of how our theories represent nature. But a study of the so-called theta-vacuum appears to refute this view. The ground state of a quantized non-Abelian Yang-Mills gauge theory is characterized by a real-valued, dimensionless parameter theta—a fundamental new constant of nature. The structure of this vacuum state is often said to arise from a degeneracy of the vacuum of the corresponding classical theory, which degeneracy (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematics, indispensability and scientific progress.Alan Baker - 2001 - Erkenntnis 55 (1):85-116.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Reconstructing Lakatos: a reassessment of Lakatos’ epistemological project in the light of the Lakatos Archive.Matteo Motterlini - 2002 - Studies in History and Philosophy of Science Part A 33 (3):487-509.
    Based on the material in the Lakatos Archive, this paper reconstructs, and then re-assesses, Lakatos’ epistemological project by placing it in the context of the debate on the role of reason in the history of science, and of the justification of rationality as a normative notion. It is claimed that Lakatos’ most fruitful ideas come from a peculiar philosophical combination of Hegelian historicism and Popperian fallibilism. The original tension, however, cannot be ultimately resolved. As a consequence, the problems that Lakatos (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Phenomenology and mathematical practice.Mary Leng - 2002 - Philosophia Mathematica 10 (1):3-14.
    A phenomenological approach to mathematical practice is sketched out, and some problems with this sort of approach are considered. The approach outlined takes mathematical practices as its data, and seeks to provide an empirically adequate philosophy of mathematics based on observation of these practices. Some observations are presented, based on two case studies of some research into the classification of C*-algebras. It is suggested that an anti-realist account of mathematics could be developed on the basis of these and other studies, (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Frameworks, models, and case studies: a new methodology for studying conceptual change in science and philosophy.Matteo De Benedetto - 2022 - Dissertation, Ludwig Maximilians Universität, München
    This thesis focuses on models of conceptual change in science and philosophy. In particular, I developed a new bootstrapping methodology for studying conceptual change, centered around the formalization of several popular models of conceptual change and the collective assessment of their improved formal versions via nine evaluative dimensions. Among the models of conceptual change treated in the thesis are Carnap’s explication, Lakatos’ concept-stretching, Toulmin’s conceptual populations, Waismann’s open texture, Mark Wilson’s patches and facades, Sneed’s structuralism, and Paul Thagard’s conceptual revolutions. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On mathematical error.David Sherry - 1997 - Studies in History and Philosophy of Science Part A 28 (3):393-416.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Assaying lakatos's philosophy of mathematics.David Corfield - 1997 - Studies in History and Philosophy of Science Part A 28 (1):99-121.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • The Formulation and Justification of Mathematical Definitions Illustrated By Deterministic Chaos.Charlotte Werndl - 2009 - In Mauricio Suárez, Mauro Dorato & Miklós Rédei (eds.), EPSA Philosophical Issues in the Sciences: Launch of the European Philosophy of Science Association. Dordrecht, Netherland: Springer. pp. 279-288.
    The general theme of this article is the actual practice of how definitions are justified and formulated in mathematics. The theoretical insights of this article are based on a case study of topological definitions of chaos. After introducing this case study, I identify the three kinds of justification which are important for topological definitions of chaos: natural-world-justification, condition-justification and redundancy-justification. To my knowledge, the latter two have not been identified before. I argue that these three kinds of justification are widespread (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Unifying foundations – to be seen in the phenomenon of language.Lars Löfgren - 2004 - Foundations of Science 9 (2):135-189.
    Scientific knowledge develops in an increasingly fragmentary way.A multitude of scientific disciplines branch out. Curiosity for thisdevelopment leads into quests for a unifying understanding. To a certain extent, foundational studies provide such unification. There is a tendency, however, also of a fragmentary growth of foundational studies, like in a multitude of disciplinaryfoundations. We suggest to look at the foundational problem, not primarily as a search for foundations for one discipline in another, as in some reductionist approach, but as a steady (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bridging the gap between argumentation theory and the philosophy of mathematics.Alison Pease, Alan Smaill, Simon Colton & John Lee - 2009 - Foundations of Science 14 (1-2):111-135.
    We argue that there are mutually beneficial connections to be made between ideas in argumentation theory and the philosophy of mathematics, and that these connections can be suggested via the process of producing computational models of theories in these domains. We discuss Lakatos’s work (Proofs and Refutations, 1976) in which he championed the informal nature of mathematics, and our computational representation of his theory. In particular, we outline our representation of Cauchy’s proof of Euler’s conjecture, in which we use work (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Lakatos-style collaborative mathematics through dialectical, structured and abstract argumentation.Alison Pease, John Lawrence, Katarzyna Budzynska, Joseph Corneli & Chris Reed - 2017 - Artificial Intelligence 246 (C):181-219.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • O filozofii matematyki Imre Lakatosa.Krzysztof Wójtowicz - 2007 - Roczniki Filozoficzne 55 (1):229-247.
    Download  
     
    Export citation  
     
    Bookmark