Switch to: References

Citations of:

Reliability of mathematical inference

Synthese 198 (8):7377-7399 (2020)

Add citations

You must login to add citations.
  1. Ontological Purity for Formal Proofs.Robin Martinot - 2024 - Review of Symbolic Logic 17 (2):395-434.
    Purity is known as an ideal of proof that restricts a proof to notions belonging to the ‘content’ of the theorem. In this paper, our main interest is to develop a conception of purity for formal (natural deduction) proofs. We develop two new notions of purity: one based on an ontological notion of the content of a theorem, and one based on the notions of surrogate ontological content and structural content. From there, we characterize which (classical) first-order natural deduction proofs (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Epistemological Subject(s) of Mathematics.Silvia De Toffoli - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 2880-2904.
    Paying attention to the inner workings of mathematicians has led to a proliferation of new themes in the philosophy of mathematics. Several of these have to do with epistemology. Philosophers of mathematical practice, however, have not (yet) systematically engaged with general (analytic) epistemology. To be sure, there are some exceptions, but they are few and far between. In this chapter, I offer an explanation of why this might be the case and show how the situation could be remedied. I contend (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Recalcitrant Disagreement in Mathematics: An “Endless and Depressing Controversy” in the History of Italian Algebraic Geometry.Silvia De Toffoli & Claudio Fontanari - 2023 - Global Philosophy 33 (38):1-29.
    If there is an area of discourse in which disagreement is virtually absent, it is mathematics. After all, mathematicians justify their claims with deductive proofs: arguments that entail their conclusions. But is mathematics really exceptional in this respect? Looking at the history and practice of mathematics, we soon realize that it is not. First, deductive arguments must start somewhere. How should we choose the starting points (i.e., the axioms)? Second, mathematicians, like the rest of us, are fallible. Their ability to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relocating mathematics: a case of moving texts between the front and back of mathematics.Jemma Lorenat - 2023 - Synthese 202 (1):1-39.
    As mathematics departments in the United States began to shift toward standards of original research at the end of the nineteenth century, many adopted journal clubs as forums to engage with new periodical literature. The Bryn Mawr Mathematics Journal Club, maintained episodically between 1896 and 1924, began as a supplement to the graduate course offerings. Each semester student and professor participants focused on a single disciplinary area or surveyed what had been published lately. The Notebooks containing these reports were stored (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Objectivity and Rigor in Classical Italian Algebraic Geometry.Silvia De Toffoli & Claudio Fontanari - 2022 - Noesis 38:195-212.
    The classification of algebraic surfaces by the Italian School of algebraic geometry is universally recognized as a breakthrough in 20th-century mathematics. The methods by which it was achieved do not, however, meet the modern standard of rigor and therefore appear dubious from a contemporary viewpoint. In this article, we offer a glimpse into the mathematical practice of the three leading exponents of the Italian School of algebraic geometry: Castelnuovo, Enriques, and Severi. We then bring into focus their distinctive conception of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Visual Proofs as Counterexamples to the Standard View of Informal Mathematical Proofs?Simon Weisgerber - 2022 - In Giardino V., Linker S., Burns R., Bellucci F., Boucheix J.-M. & Viana P. (eds.), Diagrammatic Representation and Inference. 13th International Conference, Diagrams 2022, Rome, Italy, September 14–16, 2022, Proceedings. Springer, Cham. pp. 37-53.
    A passage from Jody Azzouni’s article “The Algorithmic-Device View of Informal Rigorous Mathematical Proof” in which he argues against Hamami and Avigad’s standard view of informal mathematical proof with the help of a specific visual proof of 1/2+1/4+1/8+1/16+⋯=1 is critically examined. By reference to mathematicians’ judgments about visual proofs in general, it is argued that Azzouni’s critique of Hamami and Avigad’s account is not valid. Nevertheless, by identifying a necessary condition for the visual proof to be considered a proper proof (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What is Mathematical Rigor?John Burgess & Silvia De Toffoli - 2022 - Aphex 25:1-17.
    Rigorous proof is supposed to guarantee that the premises invoked imply the conclusion reached, and the problem of rigor may be described as that of bringing together the perspectives of formal logic and mathematical practice on how this is to be achieved. This problem has recently raised a lot of discussion among philosophers of mathematics. We survey some possible solutions and argue that failure to understand its terms properly has led to misunderstandings in the literature.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Epistemic phase transitions in mathematical proofs.Scott Viteri & Simon DeDeo - 2022 - Cognition 225 (C):105120.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • What are mathematical diagrams?Silvia De Toffoli - 2022 - Synthese 200 (2):1-29.
    Although traditionally neglected, mathematical diagrams have recently begun to attract attention from philosophers of mathematics. By now, the literature includes several case studies investigating the role of diagrams both in discovery and justification. Certain preliminary questions have, however, been mostly bypassed. What are diagrams exactly? Are there different types of diagrams? In the scholarly literature, the term “mathematical diagram” is used in diverse ways. I propose a working definition that carves out the phenomena that are of most importance for a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Proofs, Reliable Processes, and Justification in Mathematics.Yacin Hamami - 2021 - British Journal for the Philosophy of Science 74 (4):1027-1045.
    Although there exist today a variety of non-deductive reliable processes able to determine the truth of certain mathematical propositions, proof remains the only form of justification accepted in mathematical practice. Some philosophers and mathematicians have contested this commonly accepted epistemic superiority of proof on the ground that mathematicians are fallible: when the deductive method is carried out by a fallible agent, then it comes with its own level of reliability, and so might happen to be equally or even less reliable (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Reconciling Rigor and Intuition.Silvia De Toffoli - 2020 - Erkenntnis 86 (6):1783-1802.
    Criteria of acceptability for mathematical proofs are field-dependent. In topology, though not in most other domains, it is sometimes acceptable to appeal to visual intuition to support inferential steps. In previous work :829–842, 2014; Lolli, Panza, Venturi From logic to practice, Springer, Berlin, 2015; Larvor Mathematical cultures, Springer, Berlin, 2016) my co-author and I aimed at spelling out how topological proofs work on their own terms, without appealing to formal proofs which might be associated with them. In this article, I (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Informal and formal proofs, metalogic, and the groundedness problem.Mario Bacelar Valente - manuscript
    When modeling informal proofs like that of Euclid’s Elements using a sound logical system, we go from proofs seen as somewhat unrigorous – even having gaps to be filled – to rigorous proofs. However, metalogic grounds the soundness of our logical system, and proofs in metalogic are not like formal proofs and look suspiciously like the informal proofs. This brings about what I am calling here the groundedness problem: how can we decide with certainty that our metalogical proofs are rigorous (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Demostraciones «tópicamente puras» en la práctica matemática: un abordaje elucidatorio.Guillermo Nigro Puente - 2020 - Dissertation, Universidad de la República Uruguay
    Download  
     
    Export citation  
     
    Bookmark  
  • Philosophy of mathematics.Leon Horsten - 2008 - Stanford Encyclopedia of Philosophy.
    If mathematics is regarded as a science, then the philosophy of mathematics can be regarded as a branch of the philosophy of science, next to disciplines such as the philosophy of physics and the philosophy of biology. However, because of its subject matter, the philosophy of mathematics occupies a special place in the philosophy of science. Whereas the natural sciences investigate entities that are located in space and time, it is not at all obvious that this is also the case (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Anti-exceptionalism about logic as tradition rejection.Ben Martin & Ole Thomassen Hjortland - 2022 - Synthese 200 (2):1-33.
    While anti-exceptionalism about logic is now a popular topic within the philosophy of logic, there’s still a lack of clarity over what the proposal amounts to. currently, it is most common to conceive of AEL as the proposal that logic is continuous with the sciences. Yet, as we show here, this conception of AEL is unhelpful due to both its lack of precision, and its distortion of the current debates. Rather, AEL is better understood as the rejection of certain traditional (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Reliability: an introduction.Stefano Bonzio, Jürgen Landes & Barbara Osimani - 2020 - Synthese (Suppl 23):1-10.
    How we can reliably draw inferences from data, evidence and/or experience has been and continues to be a pressing question in everyday life, the sciences, politics and a number of branches in philosophy (traditional epistemology, social epistemology, formal epistemology, logic and philosophy of the sciences). In a world in which we can now longer fully rely on our experiences, interlocutors, measurement instruments, data collection and storage systems and even news outlets to draw reliable inferences, the issue becomes even more pressing. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logic of informal provability with truth values.Pawel Pawlowski & Rafal Urbaniak - 2023 - Logic Journal of the IGPL 31 (1):172-193.
    Classical logic of formal provability includes Löb’s theorem, but not reflection. In contrast, intuitions about the inferential behavior of informal provability (in informal mathematics) seem to invalidate Löb’s theorem and validate reflection (after all, the intuition is, whatever mathematicians prove holds!). We employ a non-deterministic many-valued semantics and develop a modal logic T-BAT of an informal provability operator, which indeed does validate reflection and invalidates Löb’s theorem. We study its properties and its relation to known provability-related paradoxical arguments. We also (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical consensus: a research program.Roy Wagner - 2022 - Axiomathes 32 (3):1185-1204.
    One of the distinguishing features of mathematics is the exceptional level of consensus among mathematicians. However, an analysis of what mathematicians agree on, how they achieve this agreement, and the relevant historical conditions is lacking. This paper is a programmatic intervention providing a preliminary analysis and outlining a research program in this direction.First, I review the process of ‘negotiation’ that yields agreement about the validity of proofs. This process most often does generate consensus, however, it may give rise to another (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Reliability: an introduction.Stefano Bonzio, Jürgen Landes & Barbara Osimani (eds.) - 2020 - Springer.
    Download  
     
    Export citation  
     
    Bookmark  
  • Role of Imagination and Anticipation in the Acceptance of Computability Proofs: A Challenge to the Standard Account of Rigor.Keith Weber - 2022 - Philosophia Mathematica 30 (3):343-368.
    In a 2022 paper, Hamami claimed that the orthodox view in mathematics is that a proof is rigorous if it can be translated into a derivation. Hamami then developed a descriptive account that explains how mathematicians check proofs for rigor in this sense and how they develop the capacity to do so. By exploring introductory texts in computability theory, we demonstrate that Hamami’s descriptive account does not accord with actual mathematical practice with respect to computability theory. We argue instead for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the unreasonable reliability of mathematical inference.Brendan Philip Larvor - 2022 - Synthese 200 (4):1-16.
    In, Jeremy Avigad makes a novel and insightful argument, which he presents as part of a defence of the ‘Standard View’ about the relationship between informal mathematical proofs and their corresponding formal derivations. His argument considers the various strategies by means of which mathematicians can write informal proofs that meet mathematical standards of rigour, in spite of the prodigious length, complexity and conceptual difficulty that some proofs exhibit. He takes it that showing that and how such strategies work is a (...)
    Download  
     
    Export citation  
     
    Bookmark