Switch to: References

Add citations

You must login to add citations.
  1. Goals shape means: a pluralist response to the problem of formal representation in ontic structural realism.Agnieszka M. Proszewska - 2022 - Synthese 200 (3):1-21.
    The aim of the paper is to assess the relative merits of two formal representations of structure, namely, set theory and category theory. The purpose is to articulate ontic structural realism. In turn, this will facilitate a discussion on the strengths and weaknesses of both concepts and will lead to a proposal for a pragmatics-based approach to the question of the choice of an appropriate framework. First, we present a case study from contemporary science—a comparison of the formulation of quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Is the classical limit “singular”?Jer Steeger & Benjamin H. Feintzeig - 2021 - Studies in History and Philosophy of Science Part A 88 (C):263-279.
    We argue against claims that the classical ℏ → 0 limit is “singular” in a way that frustrates an eliminative reduction of classical to quantum physics. We show one precise sense in which quantum mechanics and scaling behavior can be used to recover classical mechanics exactly, without making prior reference to the classical theory. To do so, we use the tools of strict deformation quantization, which provides a rigorous way to capture the ℏ → 0 limit. We then use the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What Do Symmetries Tell Us About Structure?Thomas William Barrett - 2017 - Philosophy of Science (4):617-639.
    Mathematicians, physicists, and philosophers of physics often look to the symmetries of an object for insight into the structure and constitution of the object. My aim in this paper is to explain why this practice is successful. In order to do so, I present a collection of results that are closely related to (and in a sense, generalizations of) Beth’s and Svenonius’ theorems.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Definable categorical equivalence.Laurenz Hudetz - 2019 - Philosophy of Science 86 (1):47-75.
    This article proposes to explicate theoretical equivalence by supplementing formal equivalence criteria with preservation conditions concerning interpretation. I argue that both the internal structure of models and choices of morphisms are aspects of formalisms that are relevant when it comes to their interpretation. Hence, a formal criterion suitable for being supplemented with preservation conditions concerning interpretation should take these two aspects into account. The two currently most important criteria—gener-alized definitional equivalence (Morita equivalence) and categorical equivalence—are not optimal in this respect. (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Model Explanation Versus Model-Induced Explanation.Insa Lawler & Emily Sullivan - 2021 - Foundations of Science 26 (4):1049-1074.
    Scientists appeal to models when explaining phenomena. Such explanations are often dubbed model explanations or model-based explanations. But what are the precise conditions for ME? Are ME special explanations? In our paper, we first rebut two definitions of ME and specify a more promising one. Based on this analysis, we single out a related conception that is concerned with explanations that are induced from working with a model. We call them ‘model-induced explanations’. Second, we study three paradigmatic cases of alleged (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Reductive Explanation and the Construction of Quantum Theories.Benjamin H. Feintzeig - 2022 - British Journal for the Philosophy of Science 73 (2):457-486.
    I argue that philosophical issues concerning reductive explanations help constrain the construction of quantum theories with appropriate state spaces. I illustrate this general proposal with two examples of restricting attention to physical states in quantum theories: regular states and symmetry-invariant states. 1Introduction2Background2.1 Physical states2.2 Reductive explanations3The Proposed ‘Correspondence Principle’4Example: Regularity5Example: Symmetry-Invariance6Conclusion: Heuristics and Discovery.
    Download  
     
    Export citation  
     
    Bookmark   1 citation