Switch to: References

Add citations

You must login to add citations.
  1. Undecidability and 1-types in intervals of the computably enumerable degrees.Klaus Ambos-Spies, Denis R. Hirschfeldt & Richard A. Shore - 2000 - Annals of Pure and Applied Logic 106 (1-3):1-47.
    We show that the theory of the partial ordering of the computably enumerable degrees in any given nontrivial interval is undecidable and has uncountably many 1-types.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Branching in the $${\Sigma^0_2}$$ -enumeration degrees: a new perspective. [REVIEW]Maria L. Affatato, Thomas F. Kent & Andrea Sorbi - 2008 - Archive for Mathematical Logic 47 (3):221-231.
    We give an alternative and more informative proof that every incomplete ${\Sigma^{0}_{2}}$ -enumeration degree is the meet of two incomparable ${\Sigma^{0}_{2}}$ -degrees, which allows us to show the stronger result that for every incomplete ${\Sigma^{0}_{2}}$ -enumeration degree a, there exist enumeration degrees x 1 and x 2 such that a, x 1, x 2 are incomparable, and for all b ≤ a, b = (b ∨ x 1 ) ∧ (b ∨ x 2 ).
    Download  
     
    Export citation  
     
    Bookmark  
  • Initial segments of the lattice of ideals of R.e. Degrees.Frank P. Weber - 1994 - Journal of Symbolic Logic 59 (4):1326-1350.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Every incomplete computably enumerable truth-table degree is branching.Peter A. Fejer & Richard A. Shore - 2001 - Archive for Mathematical Logic 40 (2):113-123.
    If r is a reducibility between sets of numbers, a natural question to ask about the structure ? r of the r-degrees containing computably enumerable sets is whether every element not equal to the greatest one is branching (i.e., the meet of two elements strictly above it). For the commonly studied reducibilities, the answer to this question is known except for the case of truth-table (tt) reducibility. In this paper, we answer the question in the tt case by showing that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Decomposition and infima in the computably enumerable degrees.Rodney G. Downey, Geoffrey L. Laforte & Richard A. Shore - 2003 - Journal of Symbolic Logic 68 (2):551-579.
    Given two incomparable c.e. Turing degrees a and b, we show that there exists a c.e. degree c such that c = (a ⋃ c) ⋂ (b ⋃ c), a ⋃ c | b ⋃ c, and c < a ⋃ b.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Degrees containing members of thin Π10 classes are dense and co-dense.Rodney G. Downey, Guohua Wu & Yue Yang - 2018 - Journal of Mathematical Logic 18 (1):1850001.
    In [Countable thin [Formula: see text] classes, Ann. Pure Appl. Logic 59 79–139], Cenzer, Downey, Jockusch and Shore proved the density of degrees containing members of countable thin [Formula: see text] classes. In the same paper, Cenzer et al. also proved the existence of degrees containing no members of thin [Formula: see text] classes. We will prove in this paper that the c.e. degrees containing no members of thin [Formula: see text] classes are dense in the c.e. degrees. We will (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Infima in the d.r.e. degrees.D. Kaddah - 1993 - Annals of Pure and Applied Logic 62 (3):207-263.
    This paper analyzes several properties of infima in Dn, the n-r.e. degrees. We first show that, for every n> 1, there are n-r.e. degrees a, b, and c, and an -r.e. degree x such that a < x < b, c and, in Dn, b c = a. We also prove a related result, namely that there are two d.r.e. degrees that form a minimal pair in Dn, for each n < ω, but that do not form a minimal pair (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Annual meeting of the association for symbolic logic: Berkeley, 1990.Alexander S. Kechris - 1991 - Journal of Symbolic Logic 56 (1):361-371.
    Download  
     
    Export citation  
     
    Bookmark  
  • Splitting properties of R. E. sets and degrees.R. G. Downey & L. V. Welch - 1986 - Journal of Symbolic Logic 51 (1):88-109.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Degree theoretical splitting properties of recursively enumerable sets.Klaus Ambos-Spies & Peter A. Fejer - 1988 - Journal of Symbolic Logic 53 (4):1110-1137.
    A recursively enumerable splitting of an r.e. setAis a pair of r.e. setsBandCsuch thatA=B∪CandB∩C= ⊘. Since for such a splitting degA= degB∪ degC, r.e. splittings proved to be a quite useful notion for investigations into the structure of the r.e. degrees. Important splitting theorems, like Sacks splitting [S1], Robinson splitting [R1] and Lachlan splitting [L3], use r.e. splittings.Since each r.e. splitting of a set induces a splitting of its degree, it is natural to study the relation between the degrees of (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Branching in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma^0_2}$$\end{document} -enumeration degrees: a new perspective. [REVIEW]Maria L. Affatato, Thomas F. Kent & Andrea Sorbi - 2008 - Archive for Mathematical Logic 47 (3):221-231.
    We give an alternative and more informative proof that every incomplete \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma^{0}_{2}}$$\end{document} -enumeration degree is the meet of two incomparable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma^{0}_{2}}$$\end{document} -degrees, which allows us to show the stronger result that for every incomplete \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma^{0}_{2}}$$\end{document} -enumeration degree a, there exist enumeration degrees x1 and x2 such that a, x1, x2 are incomparable, and for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Lattice nonembeddings and intervals of the recursively enumerable degrees.Peter Cholak & Rod Downey - 1993 - Annals of Pure and Applied Logic 61 (3):195-221.
    Let b and c be r.e. Turing degrees such that b>c. We show that there is an r.e. degree a such that b>a>c and all lattices containing a critical triple, including the lattice M5, cannot be embedded into the interval [c, a].
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Lattice nonembeddings and initial segments of the recursively enumerable degrees.Rod Downey - 1990 - Annals of Pure and Applied Logic 49 (2):97-119.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Structural interactions of the recursively enumerable T- and W-degrees.R. G. Downey & M. Stob - 1986 - Annals of Pure and Applied Logic 31:205-236.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The distribution of the generic recursively enumerable degrees.Ding Decheng - 1992 - Archive for Mathematical Logic 32 (2):113-135.
    In this paper we investigate problems about densities ofe-generic,s-generic andp-generic degrees. We, in particular, show that allp-generic degrees are non-branching, which answers an open question by Jockusch who asked: whether alls-generic degrees are non-branching and refutes a conjecture of Ingrassia; the set of degrees containing r.e.p-generic sets is the same as the set of r.e. degrees containing an r.e. non-autoreducible set.
    Download  
     
    Export citation  
     
    Bookmark  
  • Undecidability and 1-types in the recursively enumerable degrees.Klaus Ambos-Spies & Richard A. Shore - 1993 - Annals of Pure and Applied Logic 63 (1):3-37.
    Ambos-Spies, K. and R.A. Shore, Undecidability and 1-types in the recursively enumerable degrees, Annals of Pure and Applied Logic 63 3–37. We show that the theory of the partial ordering of recursively enumerable Turing degrees is undecidable and has uncountably many 1-types. In contrast to the original proof of the former which used a very complicated O''' argument our proof proceeds by a much simpler infinite injury argument. Moreover, it combines with the permitting technique to get similar results for any (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • 1996–97 Annual Meeting of the Association for Symbolic Logic.Sy D. Friedman - 1997 - Bulletin of Symbolic Logic 3 (3):378-396.
    Download  
     
    Export citation  
     
    Bookmark