Switch to: References

Add citations

You must login to add citations.
  1. Determinacy in strong cardinal models.P. D. Welch - 2011 - Journal of Symbolic Logic 76 (2):719 - 728.
    We give limits defined in terms of abstract pointclasses of the amount of determinacy available in certain canonical inner models involving strong cardinals. We show for example: Theorem A. $\mathrm{D}\mathrm{e}\mathrm{t}\text{\hspace{0.17em}}({\mathrm{\Pi }}_{1}^{1}-\mathrm{I}\mathrm{N}\mathrm{D})$ ⇒ there exists an inner model with a strong cardinal. Theorem B. Det(AQI) ⇒ there exist type-1 mice and hence inner models with proper classes of strong cardinals. where ${\mathrm{\Pi }}_{1}^{1}-\mathrm{I}\mathrm{N}\mathrm{D}\phantom{\rule{0ex}{0ex}}$ (AQI) is the pointclass of boldface ${\mathrm{\Pi }}_{1}^{1}$ -inductive (respectively arithmetically quasi-inductive) sets of reals.
    Download  
     
    Export citation  
     
    Bookmark  
  • Hypermachines.Sy-David Friedman & P. D. Welch - 2011 - Journal of Symbolic Logic 76 (2):620 - 636.
    The Infinite Time Turing Machine model [8] of Hamkins and Kidder is, in an essential sense, a "Σ₂-machine" in that it uses a Σ₂ Liminf Rule to determine cell values at limit stages of time. We give a generalisation of these machines with an appropriate Σ n rule. Such machines either halt or enter an infinite loop by stage ζ(n) = df μζ(n)[∃Σ(n) > ζ(n) L ζ(n) ≺ Σn L Σ(n) ], again generalising precisely the ITTM case. The collection of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations