Switch to: References

Add citations

You must login to add citations.
  1. The FAN principle and weak König's lemma in herbrandized second-order arithmetic.Fernando Ferreira - 2020 - Annals of Pure and Applied Logic 171 (9):102843.
    We introduce a herbrandized functional interpretation of a first-order semi-intuitionistic extension of Heyting Arithmetic and study its main properties. We then extend the interpretation to a certain system of second-order arithmetic which includes a (classically false) formulation of the FAN principle and weak König's lemma. It is shown that any first-order formula provable in this system is classically true. It is perhaps worthy of note that, in our interpretation, second-order variables are interpreted by finite sets of natural numbers.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Herbrandized modified realizability.Gilda Ferreira & Paulo Firmino - 2024 - Archive for Mathematical Logic 63 (5):703-721.
    Realizability notions in mathematical logic have a long history, which can be traced back to the work of Stephen Kleene in the 1940s, aimed at exploring the foundations of intuitionistic logic. Kleene’s initial realizability laid the ground for more sophisticated notions such as Kreisel’s modified realizability and various modern approaches. In this context, our work aligns with the lineage of realizability strategies that emphasize the accumulation, rather than the propagation of precise witnesses. In this paper, we introduce a new notion (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A parametrised functional interpretation of Heyting arithmetic.Bruno Dinis & Paulo Oliva - 2021 - Annals of Pure and Applied Logic 172 (4):102940.
    Download  
     
    Export citation  
     
    Bookmark  
  • Herbrand's theorem as higher order recursion.Bahareh Afshari, Stefan Hetzl & Graham E. Leigh - 2020 - Annals of Pure and Applied Logic 171 (6):102792.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Extracting Variable Herbrand Disjunctions.Andrei Sipoş - 2022 - Studia Logica 110 (4):1115-1134.
    Some quantitative results obtained by proof mining take the form of Herbrand disjunctions that may depend on additional parameters. We attempt to elucidate this fact through an extension to first-order arithmetic of the proof of Herbrand’s theorem due to Gerhardy and Kohlenbach which uses the functional interpretation.
    Download  
     
    Export citation  
     
    Bookmark