Switch to: References

Add citations

You must login to add citations.
  1. Harrington’s conservation theorem redone.Fernando Ferreira & Gilda Ferreira - 2008 - Archive for Mathematical Logic 47 (2):91-100.
    Leo Harrington showed that the second-order theory of arithmetic WKL 0 is ${\Pi^1_1}$ -conservative over the theory RCA 0. Harrington’s proof is model-theoretic, making use of a forcing argument. A purely proof-theoretic proof, avoiding forcing, has been eluding the efforts of researchers. In this short paper, we present a proof of Harrington’s result using a cut-elimination argument.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Elementary Proof of Strong Normalization for Atomic F.Fernando Ferreira & Gilda Ferreira - 2016 - Bulletin of the Section of Logic 45 (1):1-15.
    We give an elementary proof of the strong normalization of the atomic polymorphic calculus Fat.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Finitary Set Theory.Laurence Kirby - 2009 - Notre Dame Journal of Formal Logic 50 (3):227-244.
    I argue for the use of the adjunction operator (adding a single new element to an existing set) as a basis for building a finitary set theory. It allows a simplified axiomatization for the first-order theory of hereditarily finite sets based on an induction schema and a rigorous characterization of the primitive recursive set functions. The latter leads to a primitive recursive presentation of arithmetical operations on finite sets.
    Download  
     
    Export citation  
     
    Bookmark   11 citations