Switch to: Citations

Add references

You must login to add references.
  1. Function Theory in an Axiom-free Equation Calculus.R. L. Goodstein - 1946 - Journal of Symbolic Logic 11 (1):24-26.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • First-Order Proof Theory of Arithmetic.Samuel R. Buss - 2000 - Bulletin of Symbolic Logic 6 (4):465-466.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Saturated models of universal theories.Jeremy Avigad - 2002 - Annals of Pure and Applied Logic 118 (3):219-234.
    A notion called Herbrand saturation is shown to provide the model-theoretic analogue of a proof-theoretic method, Herbrand analysis, yielding uniform model-theoretic proofs of a number of important conservation theorems. A constructive, algebraic variation of the method is described, providing yet a third approach, which is finitary but retains the semantic flavor of the model-theoretic version.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Finitism.W. W. Tait - 1981 - Journal of Philosophy 78 (9):524-546.
    Download  
     
    Export citation  
     
    Bookmark   118 citations  
  • Herbrand analyses.Wilfried Sieg - 1991 - Archive for Mathematical Logic 30 (5-6):409-441.
    Herbrand's Theorem, in the form of $$\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\exists } $$ -inversion lemmata for finitary and infinitary sequent calculi, is the crucial tool for the determination of the provably total function(al)s of a variety of theories. The theories are (second order extensions of) fragments of classical arithmetic; the classes of provably total functions include the elements of the Polynomial Hierarchy, the Grzegorczyk Hierarchy, and the extended Grzegorczyk Hierarchy $\mathfrak{E}^\alpha $ , α < ε0. A subsidiary aim of the paper is to show (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • (1 other version)Fragments of arithmetic.Wilfried Sieg - 1985 - Annals of Pure and Applied Logic 28 (1):33-71.
    We establish by elementary proof-theoretic means the conservativeness of two subsystems of analysis over primitive recursive arithmetic. The one subsystem was introduced by Friedman [6], the other is a strengthened version of a theory of Minc [14]; each has been shown to be of considerable interest for both mathematical practice and metamathematical investigations. The foundational significance of such conservation results is clear: they provide a direct finitist justification of the part of mathematical practice formalizable in these subsystems. The results are (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • (1 other version)On n-quantifier induction.Charles Parsons - 1972 - Journal of Symbolic Logic 37 (3):466-482.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Bounded arithmetic and the polynomial hierarchy.Jan Krajíček, Pavel Pudlák & Gaisi Takeuti - 1991 - Annals of Pure and Applied Logic 52 (1-2):143-153.
    T i 2 = S i +1 2 implies ∑ p i +1 ⊆ Δ p i +1 ⧸poly. S 2 and IΔ 0 ƒ are not finitely axiomatizable. The main tool is a Herbrand-type witnessing theorem for ∃∀∃ П b i -formulas provable in T i 2 where the witnessing functions are □ p i +1.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • On the Infinite.David Hilbert - 1926 - Mathematische Annalen 95:161-190.
    Download  
     
    Export citation  
     
    Bookmark   33 citations