Switch to: References

Add citations

You must login to add citations.
  1. Computable bi-embeddable categoricity.Luca San Mauro, Nikolay Bazhenov, Ekaterina Fokina & Dino Rossegger - 2018 - Algebra and Logic 5 (57):392-396.
    We study the algorithmic complexity of isomorphic embeddings between computable structures.
    Download  
     
    Export citation  
     
    Bookmark  
  • Degrees of categoricity and spectral dimension.Nikolay A. Bazhenov, Iskander Sh Kalimullin & Mars M. Yamaleev - 2018 - Journal of Symbolic Logic 83 (1):103-116.
    A Turing degreedis the degree of categoricity of a computable structure${\cal S}$ifdis the least degree capable of computing isomorphisms among arbitrary computable copies of${\cal S}$. A degreedis the strong degree of categoricity of${\cal S}$ifdis the degree of categoricity of${\cal S}$, and there are computable copies${\cal A}$and${\cal B}$of${\cal S}$such that every isomorphism from${\cal A}$onto${\cal B}$computesd. In this paper, we build a c.e. degreedand a computable rigid structure${\cal M}$such thatdis the degree of categoricity of${\cal M}$, butdis not the strong degree of categoricity (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Coding in the automorphism group of a computably categorical structure.Dan Turetsky - 2020 - Journal of Mathematical Logic 20 (3):2050016.
    Using new techniques for controlling the categoricity spectrum of a structure, we construct a structure with degree of categoricity but infinite spectral dimension, answering a question of Bazhenov, Kalimullin and Yamaleev. Using the same techniques, we construct a computably categorical structure of non-computable Scott rank.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Degrees of categoricity and treeable degrees.Barbara F. Csima & Dino Rossegger - 2023 - Journal of Mathematical Logic 24 (3).
    In this paper, we give a characterization of the strong degrees of categoricity of computable structures greater or equal to [Formula: see text]. They are precisely the treeable degrees — the least degrees of paths through computable trees — that compute [Formula: see text]. As a corollary, we obtain several new examples of degrees of categoricity. Among them we show that every degree [Formula: see text] with [Formula: see text] for [Formula: see text] a computable ordinal greater than 2 is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Analytic computable structure theory and $$L^p$$Lp -spaces part 2.Tyler Brown & Timothy H. McNicholl - 2020 - Archive for Mathematical Logic 59 (3-4):427-443.
    Suppose \ is a computable real. We extend previous work of Clanin, Stull, and McNicholl by determining the degrees of categoricity of the separable \ spaces whose underlying measure spaces are atomic but not purely atomic. In addition, we ascertain the complexity of associated projection maps.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computability-theoretic categoricity and Scott families.Ekaterina Fokina, Valentina Harizanov & Daniel Turetsky - 2019 - Annals of Pure and Applied Logic 170 (6):699-717.
    Download  
     
    Export citation  
     
    Bookmark  
  • Degrees of Categoricity and the Hyperarithmetic Hierarchy.Barbara F. Csima, Johanna N. Y. Franklin & Richard A. Shore - 2013 - Notre Dame Journal of Formal Logic 54 (2):215-231.
    We study arithmetic and hyperarithmetic degrees of categoricity. We extend a result of E. Fokina, I. Kalimullin, and R. Miller to show that for every computable ordinal $\alpha$, $\mathbf{0}^{}$ is the degree of categoricity of some computable structure $\mathcal{A}$. We show additionally that for $\alpha$ a computable successor ordinal, every degree $2$-c.e. in and above $\mathbf{0}^{}$ is a degree of categoricity. We further prove that every degree of categoricity is hyperarithmetic and show that the index set of structures with degrees (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Degrees of categoricity on a Cone via η-systems.Barbara F. Csima & Matthew Harrison-Trainor - 2017 - Journal of Symbolic Logic 82 (1):325-346.
    We investigate the complexity of isomorphisms of computable structures on cones in the Turing degrees. We show that, on a cone, every structure has a strong degree of categoricity, and that degree of categoricity is${\rm{\Delta }}_\alpha ^0 $-complete for someα. To prove this, we extend Montalbán’sη-system framework to deal with limit ordinals in a more general way. We also show that, for any fixed computable structure, there is an ordinalαand a cone in the Turing degrees such that the exact complexity (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • 2011 North American Annual Meeting of the Association for Symbolic Logic.Itay Neeman - 2012 - Bulletin of Symbolic Logic 18 (2):275-305.
    Download  
     
    Export citation  
     
    Bookmark  
  • Categoricity Spectra for Rigid Structures.Ekaterina Fokina, Andrey Frolov & Iskander Kalimullin - 2016 - Notre Dame Journal of Formal Logic 57 (1):45-57.
    For a computable structure $\mathcal {M}$, the categoricity spectrum is the set of all Turing degrees capable of computing isomorphisms among arbitrary computable copies of $\mathcal {M}$. If the spectrum has a least degree, this degree is called the degree of categoricity of $\mathcal {M}$. In this paper we investigate spectra of categoricity for computable rigid structures. In particular, we give examples of rigid structures without degrees of categoricity.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Degrees of categoricity of trees and the isomorphism problem.Mohammad Assem Mahmoud - 2019 - Mathematical Logic Quarterly 65 (3):293-304.
    In this paper, we show that for any computable ordinal α, there exists a computable tree of rank with strong degree of categoricity if α is finite, and with strong degree of categoricity if α is infinite. In fact, these are the greatest possible degrees of categoricity for such trees. For a computable limit ordinal α, we show that there is a computable tree of rank α with strong degree of categoricity (which equals ). It follows from our proofs that, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Finite computable dimension and degrees of categoricity.Barbara F. Csima & Jonathan Stephenson - 2019 - Annals of Pure and Applied Logic 170 (1):58-94.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Effective algebraicity.Rebecca M. Steiner - 2013 - Archive for Mathematical Logic 52 (1-2):91-112.
    Results of R. Miller in 2009 proved several theorems about algebraic fields and computable categoricity. Also in 2009, A. Frolov, I. Kalimullin, and R. Miller proved some results about the degree spectrum of an algebraic field when viewed as a subfield of its algebraic closure. Here, we show that the same computable categoricity results also hold for finite-branching trees under the predecessor function and for connected, finite-valence, pointed graphs, and we show that the degree spectrum results do not hold for (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Degrees of bi-embeddable categoricity of equivalence structures.Nikolay Bazhenov, Ekaterina Fokina, Dino Rossegger & Luca San Mauro - 2019 - Archive for Mathematical Logic 58 (5-6):543-563.
    We study the algorithmic complexity of embeddings between bi-embeddable equivalence structures. We define the notions of computable bi-embeddable categoricity, \ bi-embeddable categoricity, and degrees of bi-embeddable categoricity. These notions mirror the classical notions used to study the complexity of isomorphisms between structures. We show that the notions of \ bi-embeddable categoricity and relative \ bi-embeddable categoricity coincide for equivalence structures for \. We also prove that computable equivalence structures have degree of bi-embeddable categoricity \, or \. We furthermore obtain results (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A computable functor from graphs to fields.Russell Miller, Bjorn Poonen, Hans Schoutens & Alexandra Shlapentokh - 2018 - Journal of Symbolic Logic 83 (1):326-348.
    Fried and Kollár constructed a fully faithful functor from the category of graphs to the category of fields. We give a new construction of such a functor and use it to resolve a longstanding open problem in computable model theory, by showing that for every nontrivial countable structure${\cal S}$, there exists a countable field${\cal F}$of arbitrary characteristic with the same essential computable-model-theoretic properties as${\cal S}$. Along the way, we develop a new “computable category theory”, and prove that our functor and (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Categoricity Spectra for Polymodal Algebras.Nikolay Bazhenov - 2016 - Studia Logica 104 (6):1083-1097.
    We investigate effective categoricity for polymodal algebras. We prove that the class of polymodal algebras is complete with respect to degree spectra of nontrivial structures, effective dimensions, expansion by constants, and degree spectra of relations. In particular, this implies that every categoricity spectrum is the categoricity spectrum of a polymodal algebra.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Categorical linearly ordered structures.Rod Downey, Alexander Melnikov & Keng Meng Ng - 2019 - Annals of Pure and Applied Logic 170 (10):1243-1255.
    Download  
     
    Export citation  
     
    Bookmark  
  • Degrees That Are Not Degrees of Categoricity.Bernard Anderson & Barbara Csima - 2016 - Notre Dame Journal of Formal Logic 57 (3):389-398.
    A computable structure $\mathcal {A}$ is $\mathbf {x}$-computably categorical for some Turing degree $\mathbf {x}$ if for every computable structure $\mathcal {B}\cong\mathcal {A}$ there is an isomorphism $f:\mathcal {B}\to\mathcal {A}$ with $f\leq_{T}\mathbf {x}$. A degree $\mathbf {x}$ is a degree of categoricity if there is a computable structure $\mathcal {A}$ such that $\mathcal {A}$ is $\mathbf {x}$-computably categorical, and for all $\mathbf {y}$, if $\mathcal {A}$ is $\mathbf {y}$-computably categorical, then $\mathbf {x}\leq_{T}\mathbf {y}$. We construct a $\Sigma^{0}_{2}$ set whose degree (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Every Δ20 degree is a strong degree of categoricity.Barbara F. Csima & Keng Meng Ng - 2022 - Journal of Mathematical Logic 22 (3).
    A strong degree of categoricity is a Turing degree [Formula: see text] such that there is a computable structure [Formula: see text] that is [Formula: see text]-computably categorical (there is a [Formula: see text]-computable isomorphism between any two computable copies of [Formula: see text]), and such that there exist two computable copies of [Formula: see text] between which every isomorphism computes [Formula: see text]. The question of whether every [Formula: see text] degree is a strong degree of categoricity has been (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On bi-embeddable categoricity of algebraic structures.Nikolay Bazhenov, Dino Rossegger & Maxim Zubkov - 2022 - Annals of Pure and Applied Logic 173 (3):103060.
    Download  
     
    Export citation  
     
    Bookmark