Switch to: References

Citations of:

Poincaré and the philosophy of mathematics

New York: St. Martin's Press (1992)

Add citations

You must login to add citations.
  1. Continuity in nature and in mathematics: Boltzmann and Poincaré.Marij van Strien - 2015 - Synthese 192 (10):3275-3295.
    The development of rigorous foundations of differential calculus in the course of the nineteenth century led to concerns among physicists about its applicability in physics. Through this development, differential calculus was made independent of empirical and intuitive notions of continuity, and based instead on strictly mathematical conditions of continuity. However, for Boltzmann and Poincaré, the applicability of mathematics in physics depended on whether there is a basis in physics, intuition or experience for the fundamental axioms of mathematics—and this meant that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Is Frege's Definition of the Ancestral Adequate?Richard G. Heck - 2016 - Philosophia Mathematica 24 (1):91-116.
    Why should one think Frege's definition of the ancestral correct? It can be proven to be extensionally correct, but the argument uses arithmetical induction, and that seems to undermine Frege's claim to have justified induction in purely logical terms. I discuss such circularity objections and then offer a new definition of the ancestral intended to be intensionally correct; its extensional correctness then follows without proof. This new definition can be proven equivalent to Frege's without any use of arithmetical induction. This (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Searching for pragmatism in the philosophy of mathematics: Critical Studies / Book Reviews.Steven J. Wagner - 2001 - Philosophia Mathematica 9 (3):355-376.
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege's Principle.Richard Heck - 1995 - In Jaakko Hintikka (ed.), From Dedekind to Gödel: Essays on the Development of the Foundations of Mathematics. Kluwer Academic Publishers.
    This paper explores the relationship between Hume's Prinicple and Basic Law V, investigating the question whether we really do need to suppose that, already in Die Grundlagen, Frege intended that HP should be justified by its derivation from Law V.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Why a Little Bit Goes a Long Way: Logical Foundations of Scientifically Applicable Mathematics.Solomon Feferman - 1992 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1992:442 - 455.
    Does science justify any part of mathematics and, if so, what part? These questions are related to the so-called indispensability arguments propounded, among others, by Quine and Putnam; moreover, both were led to accept significant portions of set theory on that basis. However, set theory rests on a strong form of Platonic realism which has been variously criticized as a foundation of mathematics and is at odds with scientific realism. Recent logical results show that it is possible to directly formalize (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Circularity, Scepticism and Epistemic Relativism.Steven Bland - 2016 - Social Epistemology 30 (2):150-162.
    It would seem that an epistemic framework can be justified only by means of a non-circular argument that establishes its truth-conduciveness. The problem of epistemic circularity suggests that no such argument is possible. Externalists and particularists have addressed the problem of scepticism by claiming that epistemically circular arguments can establish the truth-conduciveness of a framework’s epistemic methods. However, since these arguments are available for a good many frameworks, this response does nothing to answer the threat of epistemic relativism. The purpose (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Poincaré: Mathematics & logic & intuition.Colin Mclarty - 1997 - Philosophia Mathematica 5 (2):97-115.
    often insisted existence in mathematics means logical consistency, and formal logic is the sole guarantor of rigor. The paper joins this to his view of intuition and his own mathematics. It looks at predicativity and the infinite, Poincaré's early endorsement of the axiom of choice, and Cantor's set theory versus Zermelo's axioms. Poincaré discussed constructivism sympathetically only once, a few months before his death, and conspicuously avoided committing himself. We end with Poincaré on Couturat, Russell, and Hilbert.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Continuity, causality and determinism in mathematical physics: from the late 18th until the early 20th century.Marij van Strien - 2014 - Dissertation, University of Ghent
    It is commonly thought that before the introduction of quantum mechanics, determinism was a straightforward consequence of the laws of mechanics. However, around the nineteenth century, many physicists, for various reasons, did not regard determinism as a provable feature of physics. This is not to say that physicists in this period were not committed to determinism; there were some physicists who argued for fundamental indeterminism, but most were committed to determinism in some sense. However, for them, determinism was often not (...)
    Download  
     
    Export citation  
     
    Bookmark