Switch to: References

Add citations

You must login to add citations.
  1. Understanding does not depend on (causal) explanation.Philippe Verreault-Julien - 2019 - European Journal for Philosophy of Science 9 (2):18.
    One can find in the literature two sets of views concerning the relationship between understanding and explanation: that one understands only if 1) one has knowledge of causes and 2) that knowledge is provided by an explanation. Taken together, these tenets characterize what I call the narrow knowledge account of understanding. While the first tenet has recently come under severe attack, the second has been more resistant to change. I argue that we have good reasons to reject it on the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • What Kind of Explanations Do We Get from Agent-Based Models of Scientific Inquiry?Dunja Šešelja - 2022 - In Tomas Marvan, Hanne Andersen, Hasok Chang, Benedikt Löwe & Ivo Pezlar (eds.), Proceedings of the 16th International Congress of Logic, Methodology and Philosophy of Science and Technology. London: College Publications.
    Agent-based modelling has become a well-established method in social epistemology and philosophy of science but the question of what kind of explanations these models provide remains largely open. This paper is dedicated to this issue. It starts by distinguishing between real-world phenomena, real-world possibilities, and logical possibilities as different kinds of targets which agent-based models can represent. I argue that models representing the former two kinds provide how-actually explanations or causal how-possibly explanations. In contrast, models that represent logical possibilities provide (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Why We Cannot Learn from Minimal Models.Roberto Fumagalli - 2016 - Erkenntnis 81 (3):433-455.
    Philosophers of science have developed several accounts of how consideration of scientific models can prompt learning about real-world targets. In recent years, various authors advocated the thesis that consideration of so-called minimal models can prompt learning about such targets. In this paper, I draw on the philosophical literature on scientific modelling and on widely cited illustrations from economics and biology to argue that this thesis fails to withstand scrutiny. More specifically, I criticize leading proponents of such thesis for failing to (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • What Is the Epistemic Function of Highly Idealized Agent-Based Models of Scientific Inquiry?Daniel Frey & Dunja Šešelja - 2018 - Philosophy of the Social Sciences 48 (4):407-433.
    In this paper we examine the epistemic value of highly idealized agent-based models of social aspects of scientific inquiry. On the one hand, we argue that taking the results of such simulations as informative of actual scientific inquiry is unwarranted, at least for the class of models proposed in recent literature. Moreover, we argue that a weaker approach, which takes these models as providing only “how-possibly” explanations, does not help to improve their epistemic value. On the other hand, we suggest (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • How could models possibly provide how-possibly explanations?Philippe Verreault-Julien - 2019 - Studies in History and Philosophy of Science Part A 73:1-12.
    One puzzle concerning highly idealized models is whether they explain. Some suggest they provide so-called ‘how-possibly explanations’. However, this raises an important question about the nature of how-possibly explanations, namely what distinguishes them from ‘normal’, or how-actually, explanations? I provide an account of how-possibly explanations that clarifies their nature in the context of solving the puzzle of model-based explanation. I argue that the modal notions of actuality and possibility provide the relevant dividing lines between how-possibly and how-actually explanations. Whereas how-possibly (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Non-causal understanding with economic models: the case of general equilibrium.Philippe Verreault-Julien - 2017 - Journal of Economic Methodology 24 (3):297-317.
    How can we use models to understand real phenomena if models misrepresent the very phenomena we seek to understand? Some accounts suggest that models may afford understanding by providing causal knowledge about phenomena via how-possibly explanations. However, general equilibrium models, for example, pose a challenge to this solution since their contribution appears to be purely mathematical results. Despite this, practitioners widely acknowledge that it improves our understanding of the world. I argue that the Arrow–Debreu model provides a mathematical how-possibly explanation (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations