Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Syntax and Semantics of the Logic $\mathcal{L}^\lambda_{\omega\omega}$.Carsten Butz - 1997 - Notre Dame Journal of Formal Logic 38 (3):374-384.
    In this paper we study the logic $\mathcal{L}^\lambda_{\omega\omega}$, which is first-order logic extended by quantification over functions . We give the syntax of the logic as well as the semantics in Heyting categories with exponentials. Embedding the generic model of a theory into a Grothendieck topos yields completeness of $\mathcal{L}^\lambda_{\omega\omega}$ with respect to models in Grothendieck toposes, which can be sharpened to completeness with respect to Heyting-valued models. The logic $\mathcal{L}^\lambda_{\omega\omega}$ is the strongest for which Heyting-valued completeness is known. Finally, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Toposes in logic and logic in toposes.Marta Bunge - 1984 - Topoi 3 (1):13-22.
    The purpose of this paper is to justify the claim that Topos theory and Logic (the latter interpreted in a wide enough sense to include Model theory and Set theory) may interact to the advantage of both fields. Once the necessity of utilizing toposes (other than the topos of Sets) becomes apparent, workers in Topos theory try to make this task as easy as possible by employing a variety of methods which, in the last instance, find their justification in metatheorems (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Locales, Nuclei, and Dragalin Frames.Guram Bezhanishvili & Wesley Holliday - 2016 - In Lev Beklemishev, Stéphane Demri & András Máté (eds.), Advances in Modal Logic, Volume 11. CSLI Publications. pp. 177-196.
    It is a classic result in lattice theory that a poset is a complete lattice iff it can be realized as fixpoints of a closure operator on a powerset. Dragalin [9,10] observed that a poset is a locale (complete Heyting algebra) iff it can be realized as fixpoints of a nucleus on the locale of upsets of a poset. He also showed how to generate a nucleus on upsets by adding a structure of “paths” to a poset, forming what we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Global intuitionistic analysis.Gaisi Takeuti & Satoko Titani - 1986 - Annals of Pure and Applied Logic 31:307-339.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Embedding sheaf models for set theory into boolean-valued permutation models with an interior operator.Andre Scedrov - 1986 - Annals of Pure and Applied Logic 32:103-109.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Lindenbaum algebras of intuitionistic theories and free categories.Peter Freyd, Harvey Friedman & Andre Scedrov - 1987 - Annals of Pure and Applied Logic 35 (C):167-172.
    We consider formal theories synonymous with various free categories . Their Lindenbaum algebras may be described as the lattices of subobjects of a terminator. These theories have intuitionistic logic. We show that the Lindenbaum algebras of second order and higher order arithmetic , and set theory are not isomorphic to the Lindenbaum algebras of first order theories such as arithmetic . We also show that there are only five kernels of representations of the free Heyting algebra on one generator in (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Classifying toposes for first-order theories.Carsten Butz & Peter Johnstone - 1998 - Annals of Pure and Applied Logic 91 (1):33-58.
    By a classifying topos for a first-order theory , we mean a topos such that, for any topos models of in correspond exactly to open geometric morphisms → . We show that not every first-order theory has a classifying topos in this sense, but we characterize those which do by an appropriate ‘smallness condition’, and we show that every Grothendieck topos arises as the classifying topos of such a theory. We also show that every first-order theory has a conservative extension (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Conceptual completeness for first-order Intuitionistic logic: an application of categorical logic.Andrew M. Pitts - 1989 - Annals of Pure and Applied Logic 41 (1):33-81.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On principally generated quantaloid-modules in general, and skew local homeomorphisms in particular.Hans Heymans & Isar Stubbe - 2010 - Annals of Pure and Applied Logic 161 (1):43-65.
    Ordered sheaves on a small quantaloid have been defined in terms of -enriched categorical structures; they form a locally ordered category . The free-cocompletion KZ-doctrine on has , the quantaloid of -modules, as its category of Eilenberg–Moore algebras. In this paper we give an intrinsic description of the Kleisli algebras: we call them the locally principally generated -modules. We deduce that is biequivalent to the 2-category of locally principally generated -modules and left adjoint module morphisms. The example of locally principally (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A topological completeness theorem.Carsten Butz - 1999 - Archive for Mathematical Logic 38 (2):79-101.
    We prove a topological completeness theorem for infinitary geometric theories with respect to sheaf models. The theorem extends a classical result of Makkai and Reyes, stating that any topos with enough points has an open spatial cover. We show that one can achieve in addition that the cover is connected and locally connected.
    Download  
     
    Export citation  
     
    Bookmark  
  • Categorical foundations of mathematics or how to provide foundations for abstract mathematics.Jean-Pierre Marquis - 2013 - Review of Symbolic Logic 6 (1):51-75.
    Fefermans argument is indeed convincing in a certain context, it can be dissolved entirely by modifying the context appropriately.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Syntax and Semantics of the Logic.Carsten Butz - 1997 - Notre Dame Journal of Formal Logic 38 (3):374-384.
    In this paper we study the logic , which is first-order logic extended by quantification over functions (but not over relations). We give the syntax of the logic as well as the semantics in Heyting categories with exponentials. Embedding the generic model of a theory into a Grothendieck topos yields completeness of with respect to models in Grothendieck toposes, which can be sharpened to completeness with respect to Heyting-valued models. The logic is the strongest for which Heyting-valued completeness is known. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Topological forcing semantics with settling.Robert S. Lubarsky - 2012 - Annals of Pure and Applied Logic 163 (7):820-830.
    Download  
     
    Export citation  
     
    Bookmark  
  • Analysing choice sequences.A. S. Troelstra - 1983 - Journal of Philosophical Logic 12 (2):197 - 260.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Intuitionism: An introduction to a seminar. [REVIEW]Charles McCarty - 1983 - Journal of Philosophical Logic 12 (2):105 - 149.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The logic of approximation in quantum theory.Michael Katz - 1982 - Journal of Philosophical Logic 11 (2):215 - 228.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logic, Mathematics, Philosophy, Vintage Enthusiasms: Essays in Honour of John L. Bell.David DeVidi, Michael Hallett & Peter Clark (eds.) - 2011 - Dordrecht, Netherland: Springer.
    The volume includes twenty-five research papers presented as gifts to John L. Bell to celebrate his 60th birthday by colleagues, former students, friends and admirers. Like Bell’s own work, the contributions cross boundaries into several inter-related fields. The contributions are new work by highly respected figures, several of whom are among the key figures in their fields. Some examples: in foundations of maths and logic ; analytical philosophy, philosophy of science, philosophy of mathematics and decision theory and foundations of economics. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Sheaf models for choice sequences.Gerrit Van Der Hoeven & Ieke Moerdijk - 1984 - Annals of Pure and Applied Logic 27 (1):63-107.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Topological inductive definitions.Giovanni Curi - 2012 - Annals of Pure and Applied Logic 163 (11):1471-1483.
    In intuitionistic generalized predicative systems as constructive set theory, or constructive type theory, two categories have been proposed to play the role of the category of locales: the category FSp of formal spaces, and its full subcategory FSpi of inductively generated formal spaces. Considered in impredicative systems as the intuitionistic set theory IZF, FSp and FSpi are both equivalent to the category of locales. However, in the mentioned predicative systems, FSp fails to be closed under basic constructions such as that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Development of Categorical Logic.John L. Bell - unknown
    5.5. Every topos is linguistic: the equivalence theorem.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Transfer principles in nonstandard intuitionistic arithmetic.Jeremy Avigad & Jeffrey Helzner - 2002 - Archive for Mathematical Logic 41 (6):581-602.
    Using a slight generalization, due to Palmgren, of sheaf semantics, we present a term-model construction that assigns a model to any first-order intuitionistic theory. A modification of this construction then assigns a nonstandard model to any theory of arithmetic, enabling us to reproduce conservation results of Moerdijk and Palmgren for nonstandard Heyting arithmetic. Internalizing the construction allows us to strengthen these results with additional transfer rules; we then show that even trivial transfer axioms or minor strengthenings of these rules destroy (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A new model for intuitionistic analysis.Philip Scowcroft - 1990 - Annals of Pure and Applied Logic 47 (2):145-165.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Functional Monadic Bounded Algebras.Robert Goldblatt - 2010 - Studia Logica 96 (1):41 - 48.
    The variety MBA of monadic bounded algebras consists of Boolean algebras with a distinguished element E, thought of as an existence predicate, and an operator ∃ reflecting the properties of the existential quantifier in free logic. This variety is generated by a certain class FMBA of algebras isomorphic to ones whose elements are propositional functions. We show that FMBA is characterised by the disjunction of the equations ∃E = 1 and ∃E = 0. We also define a weaker notion of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Some purely topological models for intuitionistic analysis.Philip Scowcroft - 1999 - Annals of Pure and Applied Logic 98 (1-3):173-215.
    If one builds a topological model, analogous to that of Moschovakis , over the product of uncountably many copies of the Cantor set, one obtains a structure elementarily equivalent to Krol's model . In an intuitionistic metatheory Moschovakis's original model satisfies all the axioms of intuitionistic analysis, including the unrestricted version of weak continuity for numbers.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • GL-Quantales: Q-valued sets and their singletons. [REVIEW]Ulrich Höhle - 1998 - Studia Logica 61 (1):123-148.
    Q-valued sets are non-classical models of the formalized theory of identity with existence predicate based on the axioms of a non-commutative and non-idempotent logic. The singleton monad on the category of Q-valued sets is constructed, and elementary properties of T-algebras of the singleton monad are investigated.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Continuity and geometric logic.Steven Vickers - 2014 - Journal of Applied Logic 12 (1):14-27.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the collection of points of a formal space.Giovanni Curi - 2006 - Annals of Pure and Applied Logic 137 (1-3):126-146.
    On the collection of points of a formal space.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Mass Problems and Intuitionism.Stephen G. Simpson - 2008 - Notre Dame Journal of Formal Logic 49 (2):127-136.
    Let $\mathcal{P}_w$ be the lattice of Muchnik degrees of nonempty $\Pi^0_1$ subsets of $2^\omega$. The lattice $\mathcal{P}$ has been studied extensively in previous publications. In this note we prove that the lattice $\mathcal{P}$ is not Brouwerian.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Monadic Bounded Algebras.Galym Akishev & Robert Goldblatt - 2010 - Studia Logica 96 (1):1 - 40.
    We introduce the equational notion of a monadic bounded algebra (MBA), intended to capture algebraic properties of bounded quantification. The variety of all MBA's is shown to be generated by certain algebras of two-valued propositional functions that correspond to models of monadic free logic with an existence predicate. Every MBA is a subdirect product of such functional algebras, a fact that can be seen as an algebraic counterpart to semantic completeness for monadic free logic. The analysis involves the representation of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantale Valued Sets: Categorical Constructions and Properties.José G. Alvim, Hugo L. Mariano & Caio de A. Mendes - forthcoming - Studia Logica:1-54.
    This work mainly concerns the—here introduced—category of \(\mathscr {Q}\) -sets and functional morphisms, where \(\mathscr {Q}\) is a commutative semicartesian quantale. We prove it enjoys all limits and colimits, that it has a classifier for regular subobjects (a sort of truth-values object), which we characterize and give explicitly. Moreover: we prove it to be \(\kappa \) -locally presentable, (where \(\kappa =max\{|\mathscr {Q}|^+, \aleph _0\}\) ); we also describe a hierarchy of monoidal structures in this category.
    Download  
     
    Export citation  
     
    Bookmark  
  • Positive definite functions over regular f-rings and representations as sums of squares.W. A. MacCaull - 1989 - Annals of Pure and Applied Logic 44 (3):243-257.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On some non-classical extensions of second-order intuitionistic propositional calculus.Andrej Ščedrov - 1984 - Annals of Pure and Applied Logic 27 (2):155-164.
    Download  
     
    Export citation  
     
    Bookmark   3 citations