Le réalisme scientifique occupe une place centrale dans le système philosophique de Mario Bunge. Au cœur de cette thèse, on trouve l’affirmation selon laquelle nous pouvons connaître le monde partiellement. Il s’ensuit que les théories scientifiques ne sont pas totalement vraies ou totalement fausses, mais plutôt partiellement vraies et partiellement fausses. Ces énoncés sur la connaissance scientifique, à première vue plausible pour quiconque est familier avec la pratique scientifique, demandent néanmoins à être clarifiés, précisés et, ultimement, à être inclus dans (...) un cadre théorique plus large et rigoureux. Depuis ses toutes premières publications sur ces questions et jusqu’à récemment, Mario Bunge n’a cessé d’interpeller les philosophes afin qu’ils développent une théorie, au sens propre du terme, de la vérité partielle afin de clarifier les enjeux épistémologiques liés au réalisme scientifique. Bunge a lui-même proposé plusieurs parties de cette théorie au fil des années, mais aucune de ces propositions ne l’a satisfait pleinement et la construction de cette théorie demeure un problème entier. Dans ce texte, nous passerons rapidement en revue certaines des approches proposées par Bunge dans ses publications et nous esquisserons certaines pistes qui devraient servir à tout le moins de desiderata pour la construction d’une théorie de la vérité partielle. (shrink)
In this paper, we look at Bourbaki’s work as a case study for the notion of mathematical style. We argue that indeed Bourbaki exemplifies a mathematical style, namely the structuralist style.
In this paper, I introduce the idea that some important parts of contemporary pure mathematics are moving away from what I call the extensional point of view. More specifically, these fields are based on criteria of identity that are not extensional. After presenting a few cases, I concentrate on homotopy theory where the situation is particularly clear. Moreover, homotopy types are arguably fundamental entities of geometry, thus of a large portion of mathematics, and potentially to all mathematics, at least according (...) to some speculative research programs. (shrink)
The aim of this paper is to clarify the role of category theory in the foundations of mathematics. There is a good deal of confusion surrounding this issue. A standard philosophical strategy in the face of a situation of this kind is to draw various distinctions and in this way show that the confusion rests on divergent conceptions of what the foundations of mathematics ought to be. This is the strategy adopted in the present paper. It is divided into 5 (...) sections. We first show that already in the set theoretical framework, there are different dimensions to the expression foundations of. We then explore these dimensions more thoroughly. After a very short discussion of the links between these dimensions, we move to some of the arguments presented for and against category theory in the foundational landscape. We end up on a more speculative note by examining the relationships between category theory and set theory. (shrink)
In this paper, we try to establish that some mathematical theories, like K-theory, homology, cohomology, homotopy theories, spectral sequences, modern Galois theory (in its various applications), representation theory and character theory, etc., should be thought of as (abstract) machines in the same way that there are (concrete) machines in the natural sciences. If this is correct, then many epistemological and ontological issues in the philosophy of mathematics are seen in a different light. We concentrate on one problem which immediately follows (...) the recognition of the particular status of these theories: the demarcation problem between ‘natural kinds’ and ‘artefacts’. (shrink)
In this paper, following the claims made by various mathematicians, I try to construct a theory of levels of abstraction. I first try to clarify the basic components of the abstract method as it developed in the first quarter of the 20th century. I then submit an explication of the notion of levels of abstraction. In the final section, I briefly explore some of main philosophical consequences of the theory.
One of the key features of modern mathematics is the adoption of the abstract method. Our goal in this paper is to propose an explication of that method that is rooted in the history of the subject.
In this paper, I present and discuss critically the main elements of Mario Bunge’s philosophy of mathematics. In particular, I explore how mathematical knowledge is accounted for in Bunge’s systemic emergent materialism.To Mario, with gratitude.
In this paper, we argue that, contrary to the view held by most philosophers of mathematics, Bourbaki’s technical conception of mathematical structuralism is relevant to philosophy of mathematics. In fact, we believe that Bourbaki has captured the core of any mathematical structuralism.
Categorical foundations and set-theoretical foundations are sometimes presented as alternative foundational schemes. So far, the literature has mostly focused on the weaknesses of the categorical foundations. We want here to concentrate on what we take to be one of its strengths: the explicit identification of so-called canonical maps and their role in mathematics. Canonical maps play a central role in contemporary mathematics and although some are easily defined by set-theoretical tools, they all appear systematically in a categorical framework. The key (...) element here is the systematic nature of these maps in a categorical framework and I suggest that, from that point of view, one can see an architectonic of mathematics emerging clearly. Moreover, they force us to reconsider the nature of mathematical knowledge itself. Thus, to understand certain fundamental aspects of mathematics, category theory is necessary (at least, in the present state of mathematics). (shrink)
Structuralism has recently moved center stage in philosophy of mathematics. One of the issues discussed is the underlying logic of mathematical structuralism. In this paper, I want to look at the dual question, namely the underlying structures of logic. Indeed, from a mathematical structuralist standpoint, it makes perfect sense to try to identify the abstract structures underlying logic. We claim that one answer to this question is provided by categorical logic. In fact, we claim that the latter can be seen—and (...) probably should be seen—as being a structuralist approach to logic and it is from this angle that categorical logic is best understood. (shrink)
In this paper, I explore Bunge’s fictionism in philosophy of mathematics. After an overview of Bunge’s views, in particular his mathematical structuralism, I argue that the comparison between mathematical objects and fictions ultimately fails. I then sketch a different ontology for mathematics, based on Thomasson’s metaphysical work. I conclude that mathematics deserves its own ontology, and that, in the end, much work remains to be done to clarify the various forms of dependence that are involved in mathematical knowledge, in particular (...) its dependence on mental/brain states and material objects. (shrink)
Scientists use models to know the world. It i susually assumed that mathematicians doing pure mathematics do not. Mathematicians doing pure mathematics prove theorems about mathematical entities like sets, numbers, geometric figures, spaces, etc., they compute various functions and solve equations. In this paper, I want to exhibit models build by mathematicians to study the fundamental components of spaces and, more generally, of mathematical forms. I focus on one area of mathematics where models occupy a central role, namely homotopy theory. (...) I argue that mathematicians introduce genuine models and I offer a rough classification of these models. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.