Switch to: References

Add citations

You must login to add citations.
  1. A Hierarchy of Computably Enumerable Degrees.Rod Downey & Noam Greenberg - 2018 - Bulletin of Symbolic Logic 24 (1):53-89.
    We introduce a new hierarchy of computably enumerable degrees. This hierarchy is based on computable ordinal notations measuring complexity of approximation of${\rm{\Delta }}_2^0$functions. The hierarchy unifies and classifies the combinatorics of a number of diverse constructions in computability theory. It does so along the lines of the high degrees (Martin) and the array noncomputable degrees (Downey, Jockusch, and Stob). The hierarchy also gives a number of natural definability results in the c.e. degrees, including a definable antichain.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Reductions between types of numberings.Ian Herbert, Sanjay Jain, Steffen Lempp, Manat Mustafa & Frank Stephan - 2019 - Annals of Pure and Applied Logic 170 (12):102716.
    This paper considers reductions between types of numberings; these reductions preserve the Rogers Semilattice of the numberings reduced and also preserve the number of minimal and positive degrees in their semilattice. It is shown how to use these reductions to simplify some constructions of specific semilattices. Furthermore, it is shown that for the basic types of numberings, one can reduce the left-r.e. numberings to the r.e. numberings and the k-r.e. numberings to the k+1-r.e. numberings; all further reductions are obtained by (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Van Lambalgen's Theorem and High Degrees.Johanna N. Y. Franklin & Frank Stephan - 2011 - Notre Dame Journal of Formal Logic 52 (2):173-185.
    We show that van Lambalgen's Theorem fails with respect to recursive randomness and Schnorr randomness for some real in every high degree and provide a full characterization of the Turing degrees for which van Lambalgen's Theorem can fail with respect to Kurtz randomness. However, we also show that there is a recursively random real that is not Martin-Löf random for which van Lambalgen's Theorem holds with respect to recursive randomness.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Randomness for computable measures and initial segment complexity.Rupert Hölzl & Christopher P. Porter - 2017 - Annals of Pure and Applied Logic 168 (4):860-886.
    Download  
     
    Export citation  
     
    Bookmark  
  • Unified characterizations of lowness properties via Kolmogorov complexity.Takayuki Kihara & Kenshi Miyabe - 2015 - Archive for Mathematical Logic 54 (3-4):329-358.
    Consider a randomness notion C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document}. A uniform test in the sense of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document} is a total computable procedure that each oracle X produces a test relative to X in the sense of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document}. We say that a binary sequence Y is C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document}-random uniformly relative to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Strong Jump-Traceability.Noam Greenberg & Dan Turetsky - 2018 - Bulletin of Symbolic Logic 24 (2):147-164.
    We review the current knowledge concerning strong jump-traceability. We cover the known results relating strong jump-traceability to randomness, and those relating it to degree theory. We also discuss the techniques used in working with strongly jump-traceable sets. We end with a section of open questions.
    Download  
     
    Export citation  
     
    Bookmark   1 citation