Switch to: References

Add citations

You must login to add citations.
  1. Van Lambalgen's Theorem and High Degrees.Johanna N. Y. Franklin & Frank Stephan - 2011 - Notre Dame Journal of Formal Logic 52 (2):173-185.
    We show that van Lambalgen's Theorem fails with respect to recursive randomness and Schnorr randomness for some real in every high degree and provide a full characterization of the Turing degrees for which van Lambalgen's Theorem can fail with respect to Kurtz randomness. However, we also show that there is a recursively random real that is not Martin-Löf random for which van Lambalgen's Theorem holds with respect to recursive randomness.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On effectively closed sets of effective strong measure zero.Kojiro Higuchi & Takayuki Kihara - 2014 - Annals of Pure and Applied Logic 165 (9):1445-1469.
    The strong measure zero sets of reals have been widely studied in the context of set theory of the real line. The notion of strong measure zero is straightforwardly effectivized. A set of reals is said to be of effective strong measure zero if for any computable sequence {εn}n∈N{εn}n∈N of positive rationals, a sequence of intervals InIn of diameter εnεn covers the set. We observe that a set is of effective strong measure zero if and only if it is of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Truth-table Schnorr randomness and truth-table reducible randomness.Kenshi Miyabe - 2011 - Mathematical Logic Quarterly 57 (3):323-338.
    Schnorr randomness and computable randomness are natural concepts of random sequences. However van Lambalgen’s Theorem fails for both randomnesses. In this paper we define truth-table Schnorr randomness and truth-table reducible randomness, for which we prove that van Lambalgen's Theorem holds. We also show that the classes of truth-table Schnorr random reals relative to a high set contain reals Turing equivalent to the high set. It follows that each high Schnorr random real is half of a real for which van Lambalgen's (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Relatively computably enumerable reals.Bernard A. Anderson - 2011 - Archive for Mathematical Logic 50 (3-4):361-365.
    A real X is defined to be relatively c.e. if there is a real Y such that X is c.e.(Y) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X \not\leq_T Y}$$\end{document}. A real X is relatively simple and above if there is a real Y (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Covering the recursive sets.Bjørn Kjos-Hanssen, Frank Stephan & Sebastiaan A. Terwijn - 2017 - Annals of Pure and Applied Logic 168 (4):804-823.
    Download  
     
    Export citation  
     
    Bookmark  
  • Unified characterizations of lowness properties via Kolmogorov complexity.Takayuki Kihara & Kenshi Miyabe - 2015 - Archive for Mathematical Logic 54 (3-4):329-358.
    Consider a randomness notion C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document}. A uniform test in the sense of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document} is a total computable procedure that each oracle X produces a test relative to X in the sense of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document}. We say that a binary sequence Y is C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document}-random uniformly relative to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Schnorr triviality and genericity.Johanna N. Y. Franklin - 2010 - Journal of Symbolic Logic 75 (1):191-207.
    We study the connection between Schnorr triviality and genericity. We show that while no 2-generic is Turing equivalent to a Schnorr trivial and no 1-generic is tt-equivalent to a Schnorr trivial, there is a 1-generic that is Turing equivalent to a Schnorr trivial. However, every such 1-generic must be high. As a corollary, we prove that not all K-trivials are Schnorr trivial. We also use these techniques to extend a previous result and show that the bases of cones of Schnorr (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Anti-Complex Sets and Reducibilities with Tiny Use.Johanna N. Y. Franklin, Noam Greenberg, Frank Stephan & Guohua Wu - 2013 - Journal of Symbolic Logic 78 (4):1307-1327.
    Download  
     
    Export citation  
     
    Bookmark   6 citations