Switch to: References

Add citations

You must login to add citations.
  1. On the proof-theory of a first-order extension of GL.Yehuda Schwartz & George Tourlakis - 2014 - Logic and Logical Philosophy 23 (3).
    We introduce a first order extension of GL, called ML 3 , and develop its proof theory via a proxy cut-free sequent calculus GLTS. We prove the highly nontrivial result that cut is a derived rule in GLTS, a result that is unavailable in other known first-order extensions of GL. This leads to proofs of weak reflection and the related conservation result for ML 3 , as well as proofs for Craig’s interpolation theorem for GLTS. Turning to semantics we prove (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Incompleteness and the Barcan formula.M. J. Cresswell - 1995 - Journal of Philosophical Logic 24 (4):379 - 403.
    A (normal) system of propositional modal logic is said to be complete iff it is characterized by a class of (Kripke) frames. When we move to modal predicate logic the question of completeness can again be raised. It is not hard to prove that if a predicate modal logic is complete then it is characterized by the class of all frames for the propositional logic on which it is based. Nor is it hard to prove that if a propositional modal (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A note on Barcan formula.Antonio Frias Delgado - 2017 - Journal of Applied Non-Classical Logics 27 (3-4):321-327.
    We present in this note a plea for Barcan formula. This view connects Barcan formula with a modal principle that expresses the -Introduction rule of first-order logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Liar-type Paradoxes and the Incompleteness Phenomena.Makoto Kikuchi & Taishi Kurahashi - 2016 - Journal of Philosophical Logic 45 (4):381-398.
    We define a liar-type paradox as a consistent proposition in propositional modal logic which is obtained by attaching boxes to several subformulas of an inconsistent proposition in classical propositional logic, and show several famous paradoxes are liar-type. Then we show that we can generate a liar-type paradox from any inconsistent proposition in classical propositional logic and that undecidable sentences in arithmetic can be obtained from the existence of a liar-type paradox. We extend these results to predicate logic and discuss Yablo’s (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Predicate Logics of Constructive Arithmetical Theories.Albert Visser - 2006 - Journal of Symbolic Logic 71 (4):1311 - 1326.
    In this paper, we show that the predicate logics of consistent extensions of Heyting's Arithmetic plus Church's Thesis with uniqueness condition are complete $\Pi _{2}^{0}$. Similarly, we show that the predicate logic of HA*, i.e. Heyting's Arithmetic plus the Completeness Principle (for HA*) is complete $\Pi _{2}^{0}$. These results extend the known results due to Valery Plisko. To prove the results we adapt Plisko's method to use Tennenbaum's Theorem to prove 'categoricity of interpretations' under certain assumptions.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On first-order theories with provability operator.Sergei Artëmov & Franco Montagna - 1994 - Journal of Symbolic Logic 59 (4):1139-1153.
    In this paper the modal operator "x is provable in Peano Arithmetic" is incorporated into first-order theories. A provability extension of a theory is defined. Presburger Arithmetic of addition, Skolem Arithmetic of multiplication, and some first order theories of partial consistency statements are shown to remain decidable after natural provability extensions. It is also shown that natural provability extensions of a decidable theory may be undecidable.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Finite Kripke models and predicate logics of provability.Sergei Artemov & Giorgie Dzhaparidze - 1990 - Journal of Symbolic Logic 55 (3):1090-1098.
    The paper proves a predicate version of Solovay's well-known theorem on provability interpretations of modal logic: If a closed modal predicate-logical formula R is not valid in some finite Kripke model, then there exists an arithmetical interpretation f such that $PA \nvdash fR$ . This result implies the arithmetical completeness of arithmetically correct modal predicate logics with the finite model property (including the one-variable fragments of QGL and QS). The proof was obtained by adding "the predicate part" as a specific (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Monadic Intuitionistic and Modal Logics Admitting Provability Interpretations.Guram Bezhanishvili, Kristina Brantley & Julia Ilin - 2023 - Journal of Symbolic Logic 88 (1):427-467.
    The Gödel translation provides an embedding of the intuitionistic logic$\mathsf {IPC}$into the modal logic$\mathsf {Grz}$, which then embeds into the modal logic$\mathsf {GL}$via the splitting translation. Combined with Solovay’s theorem that$\mathsf {GL}$is the modal logic of the provability predicate of Peano Arithmetic$\mathsf {PA}$, both$\mathsf {IPC}$and$\mathsf {Grz}$admit provability interpretations. When attempting to ‘lift’ these results to the monadic extensions$\mathsf {MIPC}$,$\mathsf {MGrz}$, and$\mathsf {MGL}$of these logics, the same techniques no longer work. Following a conjecture made by Esakia, we add an appropriate version (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Provability logic.Rineke Verbrugge - 2008 - Stanford Encyclopedia of Philosophy.
    -/- Provability logic is a modal logic that is used to investigate what arithmetical theories can express in a restricted language about their provability predicates. The logic has been inspired by developments in meta-mathematics such as Gödel’s incompleteness theorems of 1931 and Löb’s theorem of 1953. As a modal logic, provability logic has been studied since the early seventies, and has had important applications in the foundations of mathematics. -/- From a philosophical point of view, provability logic is interesting because (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Variations on the Kripke Trick.Mikhail Rybakov & Dmitry Shkatov - forthcoming - Studia Logica:1-48.
    In the early 1960s, to prove undecidability of monadic fragments of sublogics of the predicate modal logic $$\textbf{QS5}$$ QS 5 that include the classical predicate logic $$\textbf{QCl}$$ QCl, Saul Kripke showed how a classical atomic formula with a binary predicate letter can be simulated by a monadic modal formula. We consider adaptations of Kripke’s simulation, which we call the Kripke trick, to various modal and superintuitionistic predicate logics not considered by Kripke. We also discuss settings where the Kripke trick does (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Predicate counterparts of modal logics of provability: High undecidability and Kripke incompleteness.Mikhail Rybakov - forthcoming - Logic Journal of the IGPL.
    In this paper, the predicate counterparts, defined both axiomatically and semantically by means of Kripke frames, of the modal propositional logics $\textbf {GL}$, $\textbf {Grz}$, $\textbf {wGrz}$ and their extensions are considered. It is proved that the set of semantical consequences on Kripke frames of every logic between $\textbf {QwGrz}$ and $\textbf {QGL.3}$ or between $\textbf {QwGrz}$ and $\textbf {QGrz.3}$ is $\Pi ^1_1$-hard even in languages with three (sometimes, two) individual variables, two (sometimes, one) unary predicate letters, and a single (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Undecidability of First-Order Modal and Intuitionistic Logics with Two Variables and One Monadic Predicate Letter.Mikhail Rybakov & Dmitry Shkatov - 2018 - Studia Logica 107 (4):695-717.
    We prove that the positive fragment of first-order intuitionistic logic in the language with two individual variables and a single monadic predicate letter, without functional symbols, constants, and equality, is undecidable. This holds true regardless of whether we consider semantics with expanding or constant domains. We then generalise this result to intervals \ and \, where QKC is the logic of the weak law of the excluded middle and QBL and QFL are first-order counterparts of Visser’s basic and formal logics, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Dominical categories: recursion theory without elements.Robert A. di Paola & Alex Heller - 1987 - Journal of Symbolic Logic 52 (3):594-635.
    Dominical categories are categories in which the notions of partial morphisms and their domains become explicit, with the latter being endomorphisms rather than subobjects of their sources. These categories form the basis for a novel abstract formulation of recursion theory, to which the present paper is devoted. The abstractness has of course its usual concomitant advantage of generality: it is interesting to see that many of the fundamental results of recursion theory remain valid in contexts far removed from their classic (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • An Arithmetically Complete Predicate Modal Logic.Yunge Hao & George Tourlakis - 2021 - Bulletin of the Section of Logic 50 (4):513-541.
    This paper investigates a first-order extension of GL called \. We outline briefly the history that led to \, its key properties and some of its toolbox: the \emph{conservation theorem}, its cut-free Gentzenisation, the ``formulators'' tool. Its semantic completeness is fully stated in the current paper and the proof is retold here. Applying the Solovay technique to those models the present paper establishes its main result, namely, that \ is arithmetically complete. As expanded below, \ is a first-order modal logic (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A New Arithmetically Incomplete First-Order Extension of Gl All Theorems of Which Have Cut Free Proofs.George Tourlakis - 2016 - Bulletin of the Section of Logic 45 (1).
    Reference [12] introduced a novel formula to formula translation tool that enables syntactic metatheoretical investigations of first-order modallogics, bypassing a need to convert them first into Gentzen style logics in order torely on cut elimination and the subformula property. In fact, the formulator tool,as was already demonstrated in loc. cit., is applicable even to the metatheoreticalstudy of logics such as QGL, where cut elimination is unavailable. This paper applies the formulator approach to show the independence of the axiom schema ☐A (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Franco Montagna’s Work on Provability Logic and Many-valued Logic.Lev Beklemishev & Tommaso Flaminio - 2016 - Studia Logica 104 (1):1-46.
    Franco Montagna, a prominent logician and one of the leaders of the Italian school on Mathematical Logic, passed away on February 18, 2015. We survey some of his results and ideas in the two disciplines he greatly contributed along his career: provability logic and many-valued logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Arithmetical interpretations and Kripke frames of predicate modal logic of provability.Taishi Kurahashi - 2013 - Review of Symbolic Logic 6 (1):1-18.
    Solovay proved the arithmetical completeness theorem for the system GL of propositional modal logic of provability. Montagna proved that this completeness does not hold for a natural extension QGL of GL to the predicate modal logic. Let Th(QGL) be the set of all theorems of QGL, Fr(QGL) be the set of all formulas valid in all transitive and conversely well-founded Kripke frames, and let PL(T) be the set of all predicate modal formulas provable in Tfor any arithmetical interpretation. Montagna’s results (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Provability logic-a short introduction.Per Lindström - 1996 - Theoria 62 (1-2):19-61.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Kripke incompleteness of predicate extensions of the modal logics axiomatized by a canonical formula for a frame with a nontrivial cluster.Tatsuya Shimura - 2000 - Studia Logica 65 (2):237-247.
    We generalize the incompleteness proof of the modal predicate logic Q-S4+ p p + BF described in Hughes-Cresswell [6]. As a corollary, we show that, for every subframe logic Lcontaining S4, Kripke completeness of Q-L+ BF implies the finite embedding property of L.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Predicate provability logic with non-modalized quantifiers.Giorgie Dzhaparidze - 1991 - Studia Logica 50 (1):149 - 160.
    Predicate modal formulas with non-modalized quantifiers (call them Q-formulas) are considered as schemata of arithmetical formulas, where is interpreted as the provability predicate of some fixed correct extension T of arithmetic. A method of constructing 1) non-provable in T and 2) false arithmetical examples for Q-formulas by Kripke-like countermodels of certain type is given. Assuming the means of T to be strong enough to solve the (undecidable) problem of derivability in QGL, the Q-fragment of the predicate version of the logic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On predicate provability logics and binumerations of fragments of Peano arithmetic.Taishi Kurahashi - 2013 - Archive for Mathematical Logic 52 (7-8):871-880.
    Solovay proved (Israel J Math 25(3–4):287–304, 1976) that the propositional provability logic of any ∑2-sound recursively enumerable extension of PA is characterized by the propositional modal logic GL. By contrast, Montagna proved in (Notre Dame J Form Log 25(2):179–189, 1984) that predicate provability logics of Peano arithmetic and Bernays–Gödel set theory are different. Moreover, Artemov proved in (Doklady Akademii Nauk SSSR 290(6):1289–1292, 1986) that the predicate provability logic of a theory essentially depends on the choice of a binumeration of the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • An Escape From Vardanyan’s Theorem.Ana de Almeida Borges & Joost J. Joosten - 2023 - Journal of Symbolic Logic 88 (4):1613-1638.
    Vardanyan’s Theorems [36, 37] state that $\mathsf {QPL}(\mathsf {PA})$ —the quantified provability logic of Peano Arithmetic—is $\Pi ^0_2$ complete, and in particular that this already holds when the language is restricted to a single unary predicate. Moreover, Visser and de Jonge [38] generalized this result to conclude that it is impossible to computably axiomatize the quantified provability logic of a wide class of theories. However, the proof of this fact cannot be performed in a strictly positive signature. The system $\mathsf (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Definability and commonsense reasoning.Gianni Amati, Luigia Carlucci Aiello & Fiora Pirri - 1997 - Artificial Intelligence 93 (1-2):169-199.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Short and Readable Proof of Cut Elimination for Two First-Order Modal Logics.Feng Gao & George Tourlakis - 2015 - Bulletin of the Section of Logic 44 (3/4):131-147.
    A well established technique toward developing the proof theory of a Hilbert-style modal logic is to introduce a Gentzen-style equivalent (a Gentzenisation), then develop the proof theory of the latter, and finally transfer the metatheoretical results to the original logic (e.g., [1, 6, 8, 18, 10, 12]). In the first-order modal case, on one hand we know that the Gentzenisation of the straightforward first-order extension of GL, the logic QGL, admits no cut elimination (if the rule is included as primitive; (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Fixed-point properties for predicate modal logics.Sohei Iwata & Taishi Kurahashi - 2020 - Annals of the Japan Association for Philosophy of Science 29:1-25.
    Download  
     
    Export citation  
     
    Bookmark  
  • On Inclusions Between Quantified Provability Logics.Taishi Kurahashi - 2021 - Studia Logica 110 (1):165-188.
    We investigate several consequences of inclusion relations between quantified provability logics. Moreover, we give a necessary and sufficient condition for the inclusion relation between quantified provability logics with respect to \ arithmetical interpretations.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Quantified Modal Logics: One Approach to Rule (Almost) them All!Eugenio Orlandelli - 2024 - Journal of Philosophical Logic 53 (4):959-996.
    We present a general approach to quantified modal logics that can simulate most other approaches. The language is based on operators indexed by terms which allow to express de re modalities and to control the interaction of modalities with the first-order machinery and with non-rigid designators. The semantics is based on a primitive counterpart relation holding between n-tuples of objects inhabiting possible worlds. This allows an object to be represented by one, many, or no object in an accessible world. Moreover (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Strictly Positive Fragments of the Provability Logic of Heyting Arithmetic.Ana de Almeida Borges & Joost J. Joosten - forthcoming - Studia Logica:1-33.
    We determine the strictly positive fragment \(\textsf{QPL}^+(\textsf{HA})\) of the quantified provability logic \(\textsf{QPL}(\textsf{HA})\) of Heyting Arithmetic. We show that \(\textsf{QPL}^+(\textsf{HA})\) is decidable and that it coincides with \(\textsf{QPL}^+(\textsf{PA})\), which is the strictly positive fragment of the quantified provability logic of of Peano Arithmetic. This positively resolves a previous conjecture of the authors described in [ 14 ]. On our way to proving these results, we carve out the strictly positive fragment \(\textsf{PL}^+(\textsf{HA})\) of the provability logic \(\textsf{PL}(\textsf{HA})\) of Heyting Arithmetic, provide (...)
    Download  
     
    Export citation  
     
    Bookmark