Switch to: References

Add citations

You must login to add citations.
  1. The set-theoretic multiverse.Joel David Hamkins - 2012 - Review of Symbolic Logic 5 (3):416-449.
    The multiverse view in set theory, introduced and argued for in this article, is the view that there are many distinct concepts of set, each instantiated in a corresponding set-theoretic universe. The universe view, in contrast, asserts that there is an absolute background set concept, with a corresponding absolute set-theoretic universe in which every set-theoretic question has a definite answer. The multiverse position, I argue, explains our experience with the enormous range of set-theoretic possibilities, a phenomenon that challenges the universe (...)
    Download  
     
    Export citation  
     
    Bookmark   111 citations  
  • O hipotezie Continuum.Krzysztof Wójtowicz - 1998 - Zagadnienia Filozoficzne W Nauce 22.
    Download  
     
    Export citation  
     
    Bookmark  
  • Throwing Darts, Time, and the Infinite.Jeremy Gwiazda - 2013 - Erkenntnis 78 (5):971-975.
    In this paper, I present a puzzle involving special relativity and the random selection of real numbers. In a manner to be specified, darts thrown later hit reals further into a fixed well-ordering than darts thrown earlier. Special relativity is then invoked to create a puzzle. I consider four ways of responding to this puzzle which, I suggest, fail. I then propose a resolution to the puzzle, which relies on the distinction between the potential infinite and the actual infinite. I (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Contemporary debates in philosophy of science.Christopher Hitchcock (ed.) - 2004 - Malden, MA: Blackwell.
    Showcasing original arguments for well-defined positions, as well as clear and concise statements of sophisticated philosophical views, this volume is an ...
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • To Continue With Continuity.Martin Cooke - 2005 - Metaphysica 6 (2):91-109.
    The metaphysical concept of continuity is important, not least because physical continua are not known to be impossible. While it is standard to model them with a mathematical continuum based upon set-theoretical intuitions, this essay considers, as a contribution to the debate about the adequacy of those intuitions, the neglected intuition that dividing the length of a line by the length of an individual point should yield the line’s cardinality. The algebraic properties of that cardinal number are derived pre-theoretically from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What new axioms could not be.Kai Hauser - 2002 - Dialectica 56 (2):109–124.
    The paper exposes the philosophical and mathematical flaws in an attempt to settle the continuum problem by a new class of axioms based on probabilistic reasoning. I also examine the larger proposal behind this approach, namely the introduction of new primitive notions that would supersede the set theoretic foundation of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Rigour and Thought Experiments: Burgess and Norton.James Robert Brown - 2022 - Axiomathes 32 (1):7-28.
    This article discusses the important and influential views of John Burgess on the nature of mathematical rigour and John Norton on the nature of thought experiments. Their accounts turn out to be surprisingly similar in spite of different subject matters. Among other things both require a reconstruction of the initial proof or thought experiment in order to officially evaluate them, even though we almost never do this in practice. The views of each are plausible and seem to solve interesting problems. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Chance and the Continuum Hypothesis.Daniel Hoek - 2020 - Philosophy and Phenomenological Research 103 (3):639-60.
    This paper presents and defends an argument that the continuum hypothesis is false, based on considerations about objective chance and an old theorem due to Banach and Kuratowski. More specifically, I argue that the probabilistic inductive methods standardly used in science presuppose that every proposition about the outcome of a chancy process has a certain chance between 0 and 1. I also argue in favour of the standard view that chances are countably additive. Since it is possible to randomly pick (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • What is Mathematics: Gödel's Theorem and Around (Edition 2015).Karlis Podnieks - manuscript
    Introduction to mathematical logic. Part 2.Textbook for students in mathematical logic and foundations of mathematics. Platonism, Intuition, Formalism. Axiomatic set theory. Around the Continuum Problem. Axiom of Determinacy. Large Cardinal Axioms. Ackermann's Set Theory. First order arithmetic. Hilbert's 10th problem. Incompleteness theorems. Consequences. Connected results: double incompleteness theorem, unsolvability of reasoning, theorem on the size of proofs, diophantine incompleteness, Loeb's theorem, consistent universal statements are provable, Berry's paradox, incompleteness and Chaitin's theorem. Around Ramsey's theorem.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Residual Access Problem.Sharon Berry - manuscript
    A range of current truth-value realist philosophies of mathematics allow one to reduce the Benacerraf Problem to a problem concerning mathematicians' ability to recognize which conceptions of pure mathematical structures are coherent – in a sense which can be cashed out in terms of logical possibility. In this paper I will clarify what it takes to solve this `residual' access problem and then present a framework for solving it.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Another Characterization of Alephs: Decompositions of Hyperspace.John C. Simms - 1997 - Notre Dame Journal of Formal Logic 38 (1):19-36.
    A theorem of Sierpinski of 1919 characterized the cardinality of the continuum by means of lines in two orthogonal directions in the plane: CH if and only if there is a subset S of the plane such that every horizontal cross-section of S is countable and every vertical cross-section of S is co-countable. A theorem of Sikorski of 1951 characterizes the cardinality of an arbitrary set by means of hyperplanes in orthogonal directions in finite powers of that set. A theorem (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Experimenting with Triangles.Valeria Giardino - 2022 - Axiomathes 32 (1):55-77.
    Is there anything like an experiment in mathematics? And if this is the case, what would distinguish a mathematical experiment from a mathematical thought experiment? In the present paper, a framework for the practice of mathematics will be put forward, which will consider mathematics as an experimenting activity and as a proving activity. The relationship between these two activities will be explored and more importantly a distinction between thought-experiments, real experiments, quasi experiments and proofs in pure mathematics will be provided. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Is the Dream Solution of the Continuum Hypothesis Attainable?Joel David Hamkins - 2015 - Notre Dame Journal of Formal Logic 56 (1):135-145.
    The dream solution of the continuum hypothesis would be a solution by which we settle the continuum hypothesis on the basis of a newly discovered fundamental principle of set theory, a missing axiom, widely regarded as true. Such a dream solution would indeed be a solution, since we would all accept the new axiom along with its consequences. In this article, however, I argue that such a dream solution to $\mathrm {CH}$ is unattainable.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Foundation of Mathematics between Theory and Practice.Giorgio Venturi - 2014 - Philosophia Scientiae 18 (1):45-80.
    In this article I propose to look at set theory not only as a founda­tion of mathematics in a traditional sense, but as a foundation for mathemat­ical practice. For this purpose I distinguish between a standard, ontological, set theoretical foundation that aims to find a set theoretical surrogate to every mathematical object, and a practical one that tries to explain mathematical phenomena, giving necessary and sufficient conditions for the proof of mathematical propositions. I will present some example of this use (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Notions of symmetry in set theory with classes.Athanassios Tzouvaras - 2000 - Annals of Pure and Applied Logic 106 (1-3):275-296.
    We adapt C. Freiling's axioms of symmetry 190–200) to models of set theory with classes by identifying small classes with sets getting thus a sequence of principles An, for n2, of increasing strength. Several equivalents of A2 are given. A2 is incompatible both with the foundation axiom and the antifoundation axioms AFA considered in Aczel . A hierarchy of symmetry degrees of preorderings is introduced and compared with An. Models are presented in which this hierarchy is strict. The main result (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • How Real are Quantum States in ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi$$\end{document}-Ontic Models? [REVIEW]R. Hermens - 2021 - Foundations of Physics 51 (2):1-26.
    There is a longstanding debate on the metaphysical relation between quantum states and the systems they describe. A series of relatively recent ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi$$\end{document}-ontology theorems have been taken to show that, provided one accepts certain assumptions, “quantum states are real”. In this paper I investigate the question of what that claim might be taken to mean in light of these theorems. It is argued that, even if one accepts the framework and assumptions (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Hyperlinear and sofic groups: a brief guide.Vladimir G. Pestov - 2008 - Bulletin of Symbolic Logic 14 (4):449-480.
    This is an introductory survey of the emerging theory of two new classes of (discrete, countable) groups, called hyperlinear and sofic groups. They can be characterized as subgroups of metric ultraproducts of families of, respectively, unitary groups U (n) and symmetric groups $S_{n},\ n\in {\Bbb N}$ . Hyperlinear groups come from theory of operator algebras (Connes' Embedding Problem), while sofic groups, introduced by Gromov, are motivated by a problem of symbolic dynamics (Gottschalk's Surjunctivity Conjecture). Open questions are numerous, in particular (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Canonical universes and intuitions about probabilities.Randall Dougherty & Jan Mycielski - 2006 - Dialectica 60 (4):357–368.
    This paper consists of three parts supplementing the papers of K. Hauser 2002 and D. Mumford 2000: There exist regular open sets of points in with paradoxical properties, which are constructed without using the axiom of choice or the continuum hypothesis. There exist canonical universes of sets in which one can define essentially all objects of mathematical analysis and in which all our intuitions about probabilities are true. Models satisfying the full axiom of choice cannot satisfy all those intuitions and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Erdős and set theory.Akihiro Kanamori - 2014 - Bulletin of Symbolic Logic 20 (4):449-490,.
    Paul Erdős was a mathematicianpar excellencewhose results and initiatives have had a large impact and made a strong imprint on the doing of and thinking about mathematics. A mathematician of alacrity, detail, and collaboration, Erdős in his six decades of work moved and thought quickly, entertained increasingly many parameters, and wrote over 1500 articles, the majority with others. Hismodus operandiwas to drive mathematics through cycles of problem, proof, and conjecture, ceaselessly progressing and ever reaching, and hismodus vivendiwas to be itinerant (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Freiling's axioms of symmetry in a general setting and some applications.Athanassios Tzouvaras - 2001 - Archive for Mathematical Logic 40 (2):131-145.
    We formulate C. Freiling's axioms of symmetry for general second-order structures with respect to a certain ideal of small sets contained in them and find several equivalent formulations of the principles. Then we focus on particular models, namely saturated and recursively saturated ones, and show that they are symmetric with respect to appropriate classes of small sets when their second-order part consists of definable sets. Some asymmetric models are also exhibited as well as partial asymmetric ones constructed by forcing.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Traditional Cavalieri principles applied to the modern notion of area.John C. Simms - 1989 - Journal of Philosophical Logic 18 (3):275 - 314.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • O losowyaniu liczby z odcinka.Krzysztof Wójtowicz - 1997 - Zagadnienia Filozoficzne W Nauce 20.
    Download  
     
    Export citation  
     
    Bookmark  
  • Wie individuell sind intentionale Einstellungen wirklich?Ralf Stoecker - 2000 - Metaphysica 1:107-119.
    So selbstverständlich es klingt, vom Geist, der Psyche oder auch der Seele eines Menschen zu reden, und so vertraut uns wissenschaftliche Disziplinen sind, die sich philosophisch oder empirisch damit beschäftigen, so schwer fällt es, ein einheitliches Merkmale dafür anzugeben, wann etwas ein psychisches Phänomen ist. Viele der potentiellen Merkmale decken eben nur einen Teil des Spektrums dessen ab, was wir gewöhnlich als psychisch bezeichnen würden, und sind damit bestenfalls hinreichende, aber sicher keine notwendigen Bedingungen des Psychischen. Im Mittelpunkt des folgenden (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • O tzw. programie Gödla.Krzysztof Wójtowicz - 2001 - Zagadnienia Filozoficzne W Nauce 29.
    Download  
     
    Export citation  
     
    Bookmark   1 citation