Switch to: References

Add citations

You must login to add citations.
  1. Definable normal measures.Sy-David Friedman & Liuzhen Wu - 2015 - Annals of Pure and Applied Logic 166 (1):46-60.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Laver-like indestructibility for hypermeasurable cardinals.Radek Honzik - 2019 - Archive for Mathematical Logic 58 (3-4):275-287.
    We show that if \ is \\)-hypermeasurable for some cardinal \ with \ \le \mu \) and GCH holds, then we can extend the universe by a cofinality-preserving forcing to obtain a model \ in which the \\)-hypermeasurability of \ is indestructible by the Cohen forcing at \ of any length up to \ is \\)-hypermeasurable in \). The preservation of hypermeasurability is useful for subsequent arguments. The construction of \ is based on the ideas of Woodin and Cummings :1–39, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The tree property at the ℵ 2 n 's and the failure of SCH at ℵ ω.Sy-David Friedman & Radek Honzik - 2015 - Annals of Pure and Applied Logic 166 (4):526-552.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • More about λ-support iterations of (<λ)-complete forcing notions.Andrzej Rosłanowski & Saharon Shelah - 2013 - Archive for Mathematical Logic 52 (5-6):603-629.
    This article continues Rosłanowski and Shelah (Int J Math Math Sci 28:63–82, 2001; Quaderni di Matematica 17:195–239, 2006; Israel J Math 159:109–174, 2007; 2011; Notre Dame J Formal Logic 52:113–147, 2011) and we introduce here a new property of (<λ)-strategically complete forcing notions which implies that their λ-support iterations do not collapse λ + (for a strongly inaccessible cardinal λ).
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Lifting Argument for the Generalized Grigorieff Forcing.Radek Honzík & Jonathan Verner - 2016 - Notre Dame Journal of Formal Logic 57 (2):221-231.
    In this short paper, we describe another class of forcing notions which preserve measurability of a large cardinal $\kappa$ from the optimal hypothesis, while adding new unbounded subsets to $\kappa$. In some ways these forcings are closer to the Cohen-type forcings—we show that they are not minimal—but, they share some properties with treelike forcings. We show that they admit fusion-type arguments which allow for a uniform lifting argument.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Regularity properties on the generalized reals.Sy David Friedman, Yurii Khomskii & Vadim Kulikov - 2016 - Annals of Pure and Applied Logic 167 (4):408-430.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Strong Measure Zero Sets on for Inaccessible.Nick Steven Chapman & Johannes Philipp Schürz - forthcoming - Journal of Symbolic Logic:1-31.
    We investigate the notion of strong measure zero sets in the context of the higher Cantor space $2^\kappa $ for $\kappa $ at least inaccessible. Using an iteration of perfect tree forcings, we give two proofs of the relative consistency of $$\begin{align*}|2^\kappa| = \kappa^{++} + \forall X \subseteq 2^\kappa:\ X \textrm{ is strong measure zero if and only if } |X| \leq \kappa^+. \end{align*}$$ Furthermore, we also investigate the stronger notion of stationary strong measure zero and show that the equivalence (...)
    Download  
     
    Export citation  
     
    Bookmark