Switch to: References

Add citations

You must login to add citations.
  1. Reverse mathematics, well-quasi-orders, and Noetherian spaces.Emanuele Frittaion, Matthew Hendtlass, Alberto Marcone, Paul Shafer & Jeroen Van der Meeren - 2016 - Archive for Mathematical Logic 55 (3):431-459.
    A quasi-order Q induces two natural quasi-orders on $${\mathcal{P}(Q)}$$, but if Q is a well-quasi-order, then these quasi-orders need not necessarily be well-quasi-orders. Nevertheless, Goubault-Larrecq (Proceedings of the 22nd Annual IEEE Symposium 4 on Logic in Computer Science (LICS’07), pp. 453–462, 2007) showed that moving from a well-quasi-order Q to the quasi-orders on $${\mathcal{P}(Q)}$$ preserves well-quasi-orderedness in a topological sense. Specifically, Goubault-Larrecq proved that the upper topologies of the induced quasi-orders on $${\mathcal{P}(Q)}$$ are Noetherian, which means that they contain no (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reduction games, provability and compactness.Damir D. Dzhafarov, Denis R. Hirschfeldt & Sarah Reitzes - 2022 - Journal of Mathematical Logic 22 (3).
    Journal of Mathematical Logic, Volume 22, Issue 03, December 2022. Hirschfeldt and Jockusch (2016) introduced a two-player game in which winning strategies for one or the other player precisely correspond to implications and non-implications between [math] principles over [math]-models of [math]. They also introduced a version of this game that similarly captures provability over [math]. We generalize and extend this game-theoretic framework to other formal systems, and establish a certain compactness result that shows that if an implication [math] between two (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reverse mathematics and order theoretic fixed point theorems.Takashi Sato & Takeshi Yamazaki - 2017 - Archive for Mathematical Logic 56 (3-4):385-396.
    The theory of countable partially ordered sets is developed within a weak subsystem of second order arithmetic. We within RCA0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {RCA_0}$$\end{document} give definitions of notions of the countable order theory and present some statements of countable lattices equivalent to arithmetical comprehension axiom over RCA0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {RCA_0}$$\end{document}. Then we within RCA0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {RCA_0}$$\end{document} give proofs of Knaster–Tarski (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations