Switch to: Citations

Add references

You must login to add references.
  1. Weak comparability of well orderings and reverse mathematics.Harvey M. Friedman & Jeffry L. Hirst - 1990 - Annals of Pure and Applied Logic 47 (1):11-29.
    Two countable well orderings are weakly comparable if there is an order preserving injection of one into the other. We say the well orderings are strongly comparable if the injection is an isomorphism between one ordering and an initial segment of the other. In [5], Friedman announced that the statement “any two countable well orderings are strongly comparable” is equivalent to ATR 0 . Simpson provides a detailed proof of this result in Chapter 5 of [13]. More recently, Friedman has (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Combinatorial principles weaker than Ramsey's Theorem for pairs.Denis R. Hirschfeldt & Richard A. Shore - 2007 - Journal of Symbolic Logic 72 (1):171-206.
    We investigate the complexity of various combinatorial theorems about linear and partial orders, from the points of view of computability theory and reverse mathematics. We focus in particular on the principles ADS (Ascending or Descending Sequence), which states that every infinite linear order has either an infinite descending sequence or an infinite ascending sequence, and CAC (Chain-AntiChain), which states that every infinite partial order has either an infinite chain or an infinite antichain. It is well-known that Ramsey's Theorem for pairs (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • On the strength of Ramsey's theorem for pairs.Peter A. Cholak, Carl G. Jockusch & Theodore A. Slaman - 2001 - Journal of Symbolic Logic 66 (1):1-55.
    We study the proof-theoretic strength and effective content of the infinite form of Ramsey's theorem for pairs. Let RT n k denote Ramsey's theorem for k-colorings of n-element sets, and let RT $^n_{ denote (∀ k)RT n k . Our main result on computability is: For any n ≥ 2 and any computable (recursive) k-coloring of the n-element sets of natural numbers, there is an infinite homogeneous set X with X'' ≤ T 0 (n) . Let IΣ n and BΣ (...)
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • Equivalence between Fraïssé’s conjecture and Jullien’s theorem.Antonio Montalbán - 2006 - Annals of Pure and Applied Logic 139 (1):1-42.
    We say that a linear ordering is extendible if every partial ordering that does not embed can be extended to a linear ordering which does not embed either. Jullien’s theorem is a complete classification of the countable extendible linear orderings. Fraïssé’s conjecture, which is actually a theorem, is the statement that says that the class of countable linear ordering, quasiordered by the relation of embeddability, contains no infinite descending chain and no infinite antichain. In this paper we study the strength (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The maximal linear extension theorem in second order arithmetic.Alberto Marcone & Richard A. Shore - 2011 - Archive for Mathematical Logic 50 (5-6):543-564.
    We show that the maximal linear extension theorem for well partial orders is equivalent over RCA0 to ATR0. Analogously, the maximal chain theorem for well partial orders is equivalent to ATR0 over RCA0.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Hilbert versus Hindman.Jeffry L. Hirst - 2012 - Archive for Mathematical Logic 51 (1-2):123-125.
    We show that a statement HIL, which is motivated by a lemma of Hilbert and close in formulation to Hindman’s theorem, is actually much weaker than Hindman’s theorem. In particular, HIL is finitistically reducible in the sense of Hilbert’s program, while Hindman’s theorem is not.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Subsystems of Second Order Arithmetic.Stephen G. Simpson - 1999 - Studia Logica 77 (1):129-129.
    Download  
     
    Export citation  
     
    Bookmark   237 citations  
  • Computability theory and linear orders.Rod Downey - 1998 - In I︠U︡riĭ Leonidovich Ershov (ed.), Handbook of recursive mathematics. New York: Elsevier. pp. 138--823.
    Download  
     
    Export citation  
     
    Bookmark   13 citations