Switch to: References

Add citations

You must login to add citations.
  1. Too naturalist and not naturalist enough: Reply to Horsten.Luca Incurvati - 2008 - Erkenntnis 69 (2):261 - 274.
    Leon Horsten has recently claimed that the class of mathematical truths coincides with the class of theorems of ZFC. I argue that the naturalistic character of Horsten’s proposal undermines his contention that this claim constitutes an analogue of a thesis that Daniel Isaacson has advanced for PA. I argue, moreover, that Horsten’s defence of his claim against an obvious objection makes use of a distinction which is not available to him given his naturalistic approach. I suggest a way out of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Naturalism, Truth and Beauty in Mathematics.Matthew E. Moore - 2007 - Philosophia Mathematica 15 (2):141-165.
    Can a scientific naturalist be a mathematical realist? I review some arguments, derived largely from the writings of Penelope Maddy, for a negative answer. The rejoinder from the realist side is that the irrealist cannot explain, as well as the realist can, why a naturalist should grant the mathematician the degree of methodological autonomy that the irrealist's own arguments require. Thus a naturalist, as such, has at least as much reason to embrace mathematical realism as to embrace irrealism.
    Download  
     
    Export citation  
     
    Bookmark  
  • The impact of the incompleteness theorems on mathematics.Solomon Feferman - manuscript
    In addition to this being the centenary of Kurt Gödel’s birth, January marked 75 years since the publication (1931) of his stunning incompleteness theorems. Though widely known in one form or another by practicing mathematicians, and generally thought to say something fundamental about the limits and potentialities of mathematical knowledge, the actual importance of these results for mathematics is little understood. Nor is this an isolated example among famous results. For example, not long ago, Philip Davis wrote me about what (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Notion of Explanation in Gödel’s Philosophy of Mathematics.Krzysztof Wójtowicz - 2019 - Studia Semiotyczne—English Supplement 30:85-106.
    The article deals with the question of in which sense the notion of explanation can be applied to Kurt Gödel’s philosophy of mathematics. Gödel, as a mathematical realist, claims that in mathematics we are dealing with facts that have an objective character. One of these facts is the solvability of all well-formulated mathematical problems—and this fact requires a clarification. The assumptions on which Gödel’s position is based are: metaphysical realism: there is a mathematical universe, it is objective and independent of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical existence.Penelope Maddy - 2005 - Bulletin of Symbolic Logic 11 (3):351-376.
    Despite some discomfort with this grandly philosophical topic, I do in fact hope to address a venerable pair of philosophical chestnuts: mathematical truth and existence. My plan is to set out three possible stands on these issues, for an exercise in compare and contrast.' A word of warning, though, to philosophical purists (and perhaps of comfort to more mathematical readers): I will explore these philosophical positions with an eye to their interconnections with some concrete issues of set theoretic method.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Aggregate theory versus set theory.Hartley Slater - 2003 - Erkenntnis 59 (2):189 - 202.
    Maddy's (1990) arguments against Aggregate Theory were undermined by the shift in her position in 1997. The present paper considers Aggregate Theory in the light of this, and the recent search for `New Axioms for Mathematics'. If Set Theory is the part-whole theory of singletons, then identifying singletons with their single members collapses Set Theory into Aggregate Theory. But if singletons are not identical to their single members, then they are not extensional objects and so are not a basis for (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Second Glance at Non-restrictiveness.B. Lowe - 2003 - Philosophia Mathematica 11 (3):323-331.
    We give an example of a theory that strongly maximizes over ZFC and discuss possible consequences of this finding.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • O filozofii matematyki Imre Lakatosa.Krzysztof Wójtowicz - 2007 - Roczniki Filozoficzne 55 (1):229-247.
    Download  
     
    Export citation  
     
    Bookmark