Switch to: References

Add citations

You must login to add citations.
  1. Prospects for a Naive Theory of Classes.Hartry Field, Harvey Lederman & Tore Fjetland Øgaard - 2017 - Notre Dame Journal of Formal Logic 58 (4):461-506.
    The naive theory of properties states that for every condition there is a property instantiated by exactly the things which satisfy that condition. The naive theory of properties is inconsistent in classical logic, but there are many ways to obtain consistent naive theories of properties in nonclassical logics. The naive theory of classes adds to the naive theory of properties an extensionality rule or axiom, which states roughly that if two classes have exactly the same members, they are identical. In (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Forcing under Anti‐Foundation Axiom: An expression of the stalks.Sato Kentaro - 2006 - Mathematical Logic Quarterly 52 (3):295-314.
    We introduce a new simple way of defining the forcing method that works well in the usual setting under FA, the Foundation Axiom, and moreover works even under Aczel's AFA, the Anti-Foundation Axiom. This new way allows us to have an intuition about what happens in defining the forcing relation. The main tool is H. Friedman's method of defining the extensional membership relation ∈ by means of the intensional membership relation ε .Analogously to the usual forcing and the usual generic (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Typed lambda-calculus in classical Zermelo-Frænkel set theory.Jean-Louis Krivine - 2001 - Archive for Mathematical Logic 40 (3):189-205.
    , which uses the intuitionistic propositional calculus, with the only connective →. It is very important, because the well known Curry-Howard correspondence between proofs and programs was originally discovered with it, and because it enjoys the normalization property: every typed term is strongly normalizable. It was extended to second order intuitionistic logic, in 1970, by J.-Y. Girard [4], under the name of system F, still with the normalization property.More recently, in 1990, the Curry-Howard correspondence was extended to classical logic, following (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A taste of set theory for philosophers.Jouko Väänänen - 2011 - Journal of the Indian Council of Philosophical Research (2):143-163.
    Download  
     
    Export citation  
     
    Bookmark  
  • Bishop's Mathematics: a Philosophical Perspective.Laura Crosilla - forthcoming - In Handbook of Bishop's Mathematics. CUP.
    Errett Bishop's work in constructive mathematics is overwhelmingly regarded as a turning point for mathematics based on intuitionistic logic. It brought new life to this form of mathematics and prompted the development of new areas of research that witness today's depth and breadth of constructive mathematics. Surprisingly, notwithstanding the extensive mathematical progress since the publication in 1967 of Errett Bishop's Foundations of Constructive Analysis, there has been no corresponding advances in the philosophy of constructive mathematics Bishop style. The aim of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Does Choice Really Imply Excluded Middle? Part II: Historical, Philosophical, and Foundational Reflections on the Goodman–Myhill Result†.Neil Tennant - 2021 - Philosophia Mathematica 29 (1):28-63.
    Our regimentation of Goodman and Myhill’s proof of Excluded Middle revealed among its premises a form of Choice and an instance of Separation.Here we revisit Zermelo’s requirement that the separating property be definite. The instance that Goodman and Myhill used is not constructively warranted. It is that principle, and not Choice alone, that precipitates Excluded Middle.Separation in various axiomatizations of constructive set theory is examined. We conclude that insufficient critical attention has been paid to how those forms of Separation fail, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Truth table logic, with a survey of embeddability results.Neil Tennant - 1989 - Notre Dame Journal of Formal Logic 30 (3):459-484.
    Kalrnaric. We set out a system T, consisting of normal proofs constructed by means of elegantly symmetrical introduction and elimination rules. In the system T there are two requirements, called ( ) and ()), on applications of discharge rules. T is sound and complete for Kalmaric arguments. ( ) requires nonvacuous discharge of assumptions; ()) requires that the assumption discharged be the sole one available of highest degree. We then consider a 'Duhemian' extension T*, obtained simply by dropping the requirement (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The consistency of some intuitionistic and constructive principles with a set theory.V. H. Hahanyan - 1981 - Studia Logica 40 (3):237 - 248.
    The main questions considered in this paper are the consistency of a variant of a set theory with intuitionistic logic, with Brouwer's principle and the investigation of the comparative power of the Church's Thesis' variants at the set theory level.
    Download  
     
    Export citation  
     
    Bookmark  
  • Putnam’s model-theoretic argument (meta)reconstructed: In the mirror of Carpintero’s and van Douven’s interpretations.Krystian Jobczyk - 2022 - Synthese 200 (6):1-37.
    In “Models and Reality”, H. Putnam formulated his model-theoretic argument against “metaphysical realism”. The article proposes a meta-reconstruction of Putnam’s model-theoretic argument in the light of two mutually compatible interpretations of it–elaborated by Manuel Garcia-Carpintero and Igor van Douven. A critical reflection on these interpretations and their adequacy for Putnam’s argument allows us to expose new theses coherent with Putnam’s reasoning and indicate new paths to improve this argument for our reconstruction task. In particular, we show that Putnam’s position may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Relational dual tableau decision procedures and their applications to modal and intuitionistic logics.Joanna Golińska-Pilarek & Taneli Huuskonen - 2014 - Annals of Pure and Applied Logic 165 (2):428-502.
    This paper introduces Basic Intuitionistic Set Theory BIST, and investigates it as a first-order set theory extending the internal logic of elementary toposes. Given an elementary topos, together with the extra structure of a directed structural system of inclusions on the topos, a forcing-style interpretation of the language of first-order set theory in the topos is given, which conservatively extends the internal logic of the topos. This forcing interpretation applies to an arbitrary elementary topos, since any such is equivalent to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On Evans's Vague Object from Set Theoretic Viewpoint.Shunsuke Yatabe & Hiroyuki Inaoka - 2006 - Journal of Philosophical Logic 35 (4):423-434.
    Gareth Evans proved that if two objects are indeterminately equal then they are different in reality. He insisted that this contradicts the assumption that there can be vague objects. However we show the consistency between Evans's proof and the existence of vague objects within classical logic. We formalize Evans's proof in a set theory without the axiom of extensionality, and we define a set to be vague if it violates extensionality with respect to some other set. There exist models of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A new model construction by making a detour via intuitionistic theories I: Operational set theory without choice is Π 1 -equivalent to KP.Kentaro Sato & Rico Zumbrunnen - 2015 - Annals of Pure and Applied Logic 166 (2):121-186.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Large sets in intuitionistic set theory.Harvey Friedman & Andrej Ščedrov - 1984 - Annals of Pure and Applied Logic 27 (1):1-24.
    We consider properties of sets in an intuitionistic setting corresponding to large cardinals in classical set theory. Adding such ‘large set axioms’ to intuitionistic ZF set theory does not violate well-know metamathematical properties of intuitionistic systems. Moreover, we consider statements in constructive analysis equivalent to the consistency of such ‘large set axioms’.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A brief introduction to algebraic set theory.Steve Awodey - 2008 - Bulletin of Symbolic Logic 14 (3):281-298.
    This brief article is intended to introduce the reader to the field of algebraic set theory, in which models of set theory of a new and fascinating kind are determined algebraically. The method is quite robust, applying to various classical, intuitionistic, and constructive set theories. Under this scheme some familiar set theoretic properties are related to algebraic ones, while others result from logical constraints. Conventional elementary set theories are complete with respect to algebraic models, which arise in a variety of (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Interpreting classical theories in constructive ones.Jeremy Avigad - 2000 - Journal of Symbolic Logic 65 (4):1785-1812.
    A number of classical theories are interpreted in analogous theories that are based on intuitionistic logic. The classical theories considered include subsystems of first- and second-order arithmetic, bounded arithmetic, and admissible set theory.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • The strength of extensionality I—weak weak set theories with infinity.Kentaro Sato - 2009 - Annals of Pure and Applied Logic 157 (2-3):234-268.
    We measure, in the presence of the axiom of infinity, the proof-theoretic strength of the axioms of set theory which make the theory look really like a “theory of sets”, namely, the axiom of extensionality Ext, separation axioms and the axiom of regularity Reg . We first introduce a weak weak set theory as a base over which to clarify the strength of these axioms. We then prove the following results about proof-theoretic ordinals:1. and ,2. and . We also show (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • What is a Restrictive Theory?Toby Meadows - 2024 - Review of Symbolic Logic 17 (1):67-105.
    In providing a good foundation for mathematics, set theorists often aim to develop the strongest theories possible and avoid those theories that place undue restrictions on the capacity to possess strength. For example, adding a measurable cardinal to $ZFC$ is thought to give a stronger theory than adding $V=L$ and the latter is thought to be more restrictive than the former. The two main proponents of this style of account are Penelope Maddy and John Steel. In this paper, I’ll offer (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Epistemology Versus Ontology: Essays on the Philosophy and Foundations of Mathematics in Honour of Per Martin-Löf.Peter Dybjer, Sten Lindström, Erik Palmgren & Göran Sundholm (eds.) - 2012 - Dordrecht, Netherland: Springer.
    This book brings together philosophers, mathematicians and logicians to penetrate important problems in the philosophy and foundations of mathematics. In philosophy, one has been concerned with the opposition between constructivism and classical mathematics and the different ontological and epistemological views that are reflected in this opposition. The dominant foundational framework for current mathematics is classical logic and set theory with the axiom of choice. This framework is, however, laden with philosophical difficulties. One important alternative foundational programme that is actively pursued (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The strength of extensionality II—weak weak set theories without infinity.Kentaro Sato - 2011 - Annals of Pure and Applied Logic 162 (8):579-646.
    By obtaining several new results on Cook-style two-sorted bounded arithmetic, this paper measures the strengths of the axiom of extensionality and of other weak fundamental set-theoretic axioms in the absence of the axiom of infinity, following the author’s previous work [K. Sato, The strength of extensionality I — weak weak set theories with infinity, Annals of Pure and Applied Logic 157 234–268] which measures them in the presence. These investigations provide a uniform framework in which three different kinds of reverse (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Relating first-order set theories, toposes and categories of classes.Steve Awodey, Carsten Butz, Alex Simpson & Thomas Streicher - 2014 - Annals of Pure and Applied Logic 165 (2):428-502.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • CZF does not have the existence property.Andrew W. Swan - 2014 - Annals of Pure and Applied Logic 165 (5):1115-1147.
    Constructive theories usually have interesting metamathematical properties where explicit witnesses can be extracted from proofs of existential sentences. For relational theories, probably the most natural of these is the existence property, EP, sometimes referred to as the set existence property. This states that whenever ϕϕ is provable, there is a formula χχ such that ϕ∧χϕ∧χ is provable. It has been known since the 80s that EP holds for some intuitionistic set theories and yet fails for IZF. Despite this, it has (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Set theory: Constructive and intuitionistic ZF.Laura Crosilla - 2010 - Stanford Encyclopedia of Philosophy.
    Constructive and intuitionistic Zermelo-Fraenkel set theories are axiomatic theories of sets in the style of Zermelo-Fraenkel set theory (ZF) which are based on intuitionistic logic. They were introduced in the 1970's and they represent a formal context within which to codify mathematics based on intuitionistic logic. They are formulated on the basis of the standard first order language of Zermelo-Fraenkel set theory and make no direct use of inherently constructive ideas. In working in constructive and intuitionistic ZF we can thus (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Metamathematical Properties of a Constructive Multi-typed Theory.Farida Kachapova - 2017 - Studia Logica 105 (3):587-610.
    This paper describes an axiomatic theory BT, which is a suitable formal theory for developing constructive mathematics, due to its expressive language with countable number of set types and its constructive properties such as the existence and disjunction properties, and consistency with the formal Church thesis. BT has a predicative comprehension axiom and usual combinatorial operations. BT has intuitionistic logic and is consistent with classical logic. BT is mutually interpretable with a so called theory of arithmetical truth PATr and with (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A new model construction by making a detour via intuitionistic theories IV: A closer connection between KPω and BI.Kentaro Sato - 2024 - Annals of Pure and Applied Logic 175 (7):103422.
    Download  
     
    Export citation  
     
    Bookmark  
  • Proof-theoretic conservations of weak weak intuitionistic constructive set theories.Lev Gordeev - 2013 - Annals of Pure and Applied Logic 164 (12):1274-1292.
    The paper aims to provide precise proof theoretic characterizations of Myhill–Friedman-style “weak” constructive extensional set theories and Aczel–Rathjen analogous constructive set theories both enriched by Mostowski-style collapsing axioms and/or related anti-foundation axioms. The main results include full intuitionistic conservations over the corresponding purely arithmetical formalisms that are well known in the reverse mathematics – which strengthens analogous results obtained by the author in the 80s. The present research was inspired by the more recent Sato-style “weak weak” classical extensional set theories (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Lipschitz functions in constructive reverse mathematics.I. Loeb - 2013 - Logic Journal of the IGPL 21 (1):28-43.
    Download  
     
    Export citation  
     
    Bookmark  
  • The consistency of some intuitionistic and constructive principles with a set theory.V. A. Hahanyan - 1981 - Studia Logica 40:237.
    The main questions considered in this paper are the consistency of a variant of a set theory with intuitionistic logic, with Brouwer's principle and the investigation of the comparative power of the Church's Thesis' variants at the set theory level.
    Download  
     
    Export citation  
     
    Bookmark  
  • Constructive mathematics, Church's Thesis, and free choice sequences.David A. Turner - 2021 - In L. De Mol, A. Weiermann, F. Manea & D. Fernández-Duque (eds.), Connecting with Computability. CiE 2021. Lecture Notes in Computer Science, vol 12813.
    We see the defining properties of constructive mathematics as being the proof interpretation of the logical connectives and the definition of function as rule or method. We sketch the development of intuitionist type theory as an alternative to set theory. We note that the axiom of choice is constructively valid for types, but not for sets. We see the theory of types, in which proofs are directly algorithmic, as a more natural setting for constructive mathematics than set theories like IZF. (...)
    Download  
     
    Export citation  
     
    Bookmark