Switch to: References

Citations of:

Semantical Investigations in Heyting's Intuitionistic Logic

Dordrecht, Netherland: Reidel (1981)

Add citations

You must login to add citations.
  1. On some extensions of intuitionistic logic.Rodolfo C. Ertola Biraben - 2012 - Bulletin of the Section of Logic 41 (1/2):17-22.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Strange Remark Attributed to Gödel.Lloyd Humberstone - 2003 - History and Philosophy of Logic 24 (1):39-44.
    We assemble material from the literature on matrix methodology for sentential logic—without claiming to present any new logical results—in order to show that Gödel once made (or at least, is quoted as having made) an uncharacteristically ill-considered remark in this area.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The revival of rejective negation.Lloyd Humberstone - 2000 - Journal of Philosophical Logic 29 (4):331-381.
    Whether assent ("acceptance") and dissent ("rejection") are thought of as speech acts or as propositional attitudes, the leading idea of rejectivism is that a grasp of the distinction between them is prior to our understanding of negation as a sentence operator, this operator then being explicable as applying to A to yield something assent to which is tantamount to dissent from A. Widely thought to have been refuted by an argument of Frege's, rejectivism has undergone something of a revival in (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • What is a Relevant Connective?Shawn Standefer - 2022 - Journal of Philosophical Logic 51 (4):919-950.
    There appears to be few, if any, limits on what sorts of logical connectives can be added to a given logic. One source of potential limitations is the motivating ideology associated with a logic. While extraneous to the logic, the motivating ideology is often important for the development of formal and philosophical work on that logic, as is the case with intuitionistic logic. One family of logics for which the philosophical ideology is important is the family of relevant logics. In (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Logical discrimination (2nd edition).Lloyd Humberstone - 2005 - In Jean-Yves Béziau (ed.), Logica Universalis: Towards a General Theory of Logic. Boston: Birkhäuser Verlog. pp. 225–246.
    We discuss conditions under which the following ‘truism’ does indeed express a truth: the weaker a logic is in terms of what it proves, the stronger it is as a tool for registering distinctions amongst the formulas in its language.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Heterogeneous logic.I. L. Humberstone - 1988 - Erkenntnis 29 (3):395 - 435.
    This paper considers the question: what becomes of the notion of a logic as a way of codifying valid arguments when the customary assumption is dropped that the premisses and conclusions of these arguments are statements from some single language? An elegant treatment of the notion of a logic, when this assumption is in force, is that provided by Dana Scott's theory of consequence relations; this treatment is appropriately generalized in the present paper to the case where we do not (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Contra-classical logics.Lloyd Humberstone - 2000 - Australasian Journal of Philosophy 78 (4):438 – 474.
    Only propositional logics are at issue here. Such a logic is contra-classical in a superficial sense if it is not a sublogic of classical logic, and in a deeper sense, if there is no way of translating its connectives, the result of which translation gives a sublogic of classical logic. After some motivating examples, we investigate the incidence of contra-classicality (in the deeper sense) in various logical frameworks. In Sections 3 and 4 we will encounter, originally as an example of (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Generalizations of the Weak Law of the Excluded Middle.Andrea Sorbi & Sebastiaan A. Terwijn - 2015 - Notre Dame Journal of Formal Logic 56 (2):321-331.
    We study a class of formulas generalizing the weak law of the excluded middle and provide a characterization of these formulas in terms of Kripke frames and Brouwer algebras. We use these formulas to separate logics corresponding to factors of the Medvedev lattice.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Prior’s OIC nonconservativity example revisited.Lloyd Humberstone - 2014 - Journal of Applied Non-Classical Logics 24 (3):209-235.
    In his 1964 note, ‘Two Additions to Positive Implication’, A. N. Prior showed that standard axioms governing conjunction yield a nonconservative extension of the pure implicational intermediate logic OIC of R. A. Bull. Here, after reviewing the situation with the aid of an adapted form of the Kripke semantics for intuitionistic and intermediate logics, we proceed to illuminate this example by transposing it to the setting of modal logic, and then relate it to the propositional logic of what have been (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • KALC: a constructive semantics for ALC.Paola Villa - 2011 - Journal of Applied Non-Classical Logics 21 (2):233-255.
    In this article we firstly present a Kripke semantics for the description logic ALC which is directly inspired by the semantics for Intuitionistic logic. Moreover, we discuss why a direct translation of this kind of semantics is not adequate in the description logic context and propose a constructive semantics that differs from the previous one by the fact that we impose a condition on the partial order. We also present a tableau calculus which is sound and complete with respect to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Cut-free tableau calculi for some intuitionistic modal logics.Mauro Ferrari - 1997 - Studia Logica 59 (3):303-330.
    In this paper we provide cut-free tableau calculi for the intuitionistic modal logics IK, ID, IT, i.e. the intuitionistic analogues of the classical modal systems K, D and T. Further, we analyse the necessity of duplicating formulas to which rules are applied. In order to develop these calculi we extend to the modal case some ideas presented by Miglioli, Moscato and Ornaghi for intuitionistic logic. Specifically, we enlarge the language with the new signs Fc and CR near to the usual (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Truth and Falsehood: An Inquiry Into Generalized Logical Values.Yaroslav Shramko & Heinrich Wansing - 2011 - Dordrecht, Netherland: Springer.
    The book presents a thoroughly elaborated logical theory of generalized truth-values understood as subsets of some established set of truth values. After elucidating the importance of the very notion of a truth value in logic and philosophy, we examine some possible ways of generalizing this notion. The useful four-valued logic of first-degree entailment by Nuel Belnap and the notion of a bilattice constitute the basis for further generalizations. By doing so we elaborate the idea of a multilattice, and most notably, (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Safe Contraction Revisited.Hans Rott & Sven Ove Hansson - 2014 - In Sven Ove Hansson (ed.), David Makinson on Classical Methods for Non-Classical Problems (Outstanding Contributions to Logic, Vol. 3). Springer. pp. 35–70.
    Modern belief revision theory is based to a large extent on partial meet contraction that was introduced in the seminal article by Carlos Alchourrón, Peter Gärdenfors, and David Makinson that appeared in 1985. In the same year, Alchourrón and Makinson published a significantly different approach to the same problem, called safe contraction. Since then, safe contraction has received much less attention than partial meet contraction. The present paper summarizes the current state of knowledge on safe contraction, provides some new results (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Truth‐value relations and logical relations.Lloyd Humberstone - 2023 - Theoria 89 (1):124-147.
    After some generalities about connections between functions and relations in Sections 1 and 2 recalls the possibility of taking the semantic values of ‐ary Boolean connectives as ‐ary relations among truth‐values rather than as ‐ary truth functions. Section 3, the bulk of the paper, looks at correlates of these truth‐value relations as applied to formulas, and explores in a preliminary way how their properties are related to the properties of “logical relations” among formulas such as equivalence, implication (entailment) and contrariety (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Decidability of quantified propositional intuitionistic logic and s4 on trees of height and arity ≤ω.Richard Zach - 2004 - Journal of Philosophical Logic 33 (2):155-164.
    Quantified propositional intuitionistic logic is obtained from propositional intuitionistic logic by adding quantifiers ∀p, ∃p, where the propositional variables range over upward-closed subsets of the set of worlds in a Kripke structure. If the permitted accessibility relations are arbitrary partial orders, the resulting logic is known to be recursively isomorphic to full second-order logic (Kremer, 1997). It is shown that if the Kripke structures are restricted to trees of at height and width at most ω, the resulting logics are decidable. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Valuational semantics of rule derivability.Lloyd Humberstone - 1996 - Journal of Philosophical Logic 25 (5):451 - 461.
    If a certain semantic relation (which we call 'local consequence') is allowed to guide expectations about which rules are derivable from other rules, these expectations will not always be fulfilled, as we illustrate. An alternative semantic criterion (based on a relation we call 'global consequence'), suggested by work of J.W. Garson, turns out to provide a much better - indeed a perfectly accurate - guide to derivability.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Undecidability of First-Order Modal and Intuitionistic Logics with Two Variables and One Monadic Predicate Letter.Mikhail Rybakov & Dmitry Shkatov - 2018 - Studia Logica 107 (4):695-717.
    We prove that the positive fragment of first-order intuitionistic logic in the language with two individual variables and a single monadic predicate letter, without functional symbols, constants, and equality, is undecidable. This holds true regardless of whether we consider semantics with expanding or constant domains. We then generalise this result to intervals \ and \, where QKC is the logic of the weak law of the excluded middle and QBL and QFL are first-order counterparts of Visser’s basic and formal logics, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Logical Friendliness and Sympathy in Logic.David C. Makinson - 2005 - In Jean-Yves Béziau (ed.), Logica Universalis: Towards a General Theory of Logic. Boston: Birkhäuser Verlog. pp. 191--205.
    Defines and examines a notion of logical friendliness, a broadening of the familiar notion of classical consequence. Also reviews familiar notions and operations with which friendliness makes contact, providing a new light in which they may be seen.
    Download  
     
    Export citation  
     
    Bookmark  
  • Completeness for the Classical Antecedent Fragment of Inquisitive First-Order Logic.Gianluca Grilletti - 2021 - Journal of Logic, Language and Information 30 (4):725-751.
    Inquisitive first order logic is an extension of first order classical logic, introducing questions and studying the logical relations between questions and quantifiers. It is not known whether is recursively axiomatizable, even though an axiomatization has been found for fragments of the logic. In this paper we define the \—classical antecedent—fragment, together with an axiomatization and a proof of its strong completeness. This result extends the ones presented in the literature and introduces a new approach to study the axiomatization problem (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • For Want of an ‘And’: A Puzzle about Non-Conservative Extension.Lloyd Humberstone - 2005 - History and Philosophy of Logic 26 (3):229-266.
    Section 1 recalls a point noted by A. N. Prior forty years ago: that a certain formula in the language of a purely implicational intermediate logic investigated by R. A. Bull is unprovable in that logic but provable in the extension of the logic by the usual axioms for conjunction, once this connective is added to the language. Section 2 reminds us that every formula is interdeducible with (i.e. added to intuitionistic logic, yields the same intermediate logic as) some conjunction-free (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • David Makinson on Classical Methods for Non-Classical Problems.Sven Ove Hansson (ed.) - 2013 - Dordrecht, Netherland: Springer.
    The volume analyses and develops David Makinson’s efforts to make classical logic useful outside its most obvious application areas. The book contains chapters that analyse, appraise, or reshape Makinson’s work and chapters that develop themes emerging from his contributions. These are grouped into major areas to which Makinsons has made highly influential contributions and the volume in its entirety is divided into four sections, each devoted to a particular area of logic: belief change, uncertain reasoning, normative systems and the resources (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Expressive power and semantic completeness: Boolean connectives in modal logic.I. L. Humberstone - 1990 - Studia Logica 49 (2):197 - 214.
    We illustrate, with three examples, the interaction between boolean and modal connectives by looking at the role of truth-functional reasoning in the provision of completeness proofs for normal modal logics. The first example (§ 1) is of a logic (more accurately: range of logics) which is incomplete in the sense of being determined by no class of Kripke frames, where the incompleteness is entirely due to the lack of boolean negation amongst the underlying non-modal connectives. The second example (§ 2) (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Undecidability of first-order intuitionistic and modal logics with two variables.Roman Kontchakov, Agi Kurucz & Michael Zakharyaschev - 2005 - Bulletin of Symbolic Logic 11 (3):428-438.
    We prove that the two-variable fragment of first-order intuitionistic logic is undecidable, even without constants and equality. We also show that the two-variable fragment of a quantified modal logic L with expanding first-order domains is undecidable whenever there is a Kripke frame for L with a point having infinitely many successors (such are, in particular, the first-order extensions of practically all standard modal logics like K, K4, GL, S4, S5, K4.1, S4.2, GL.3, etc.). For many quantified modal logics, including those (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The pleasures of anticipation: Enriching intuitionistic logic. [REVIEW]Lloyd Humberstone - 2001 - Journal of Philosophical Logic 30 (5):395-438.
    We explore a relation we call 'anticipation' between formulas, where A anticipates B (according to some logic) just in case B is a consequence (according to that logic, presumed to support some distinguished implicational connective →) of the formula A → B. We are especially interested in the case in which the logic is intuitionistic (propositional) logic and are much concerned with an extension of that logic with a new connective, written as "a", governed by rules which guarantee that for (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Subformula and separation properties in natural deduction via small Kripke models: Subformula and separation properties.Peter Milne - 2010 - Review of Symbolic Logic 3 (2):175-227.
    Various natural deduction formulations of classical, minimal, intuitionist, and intermediate propositional and first-order logics are presented and investigated with respect to satisfaction of the separation and subformula properties. The technique employed is, for the most part, semantic, based on general versions of the Lindenbaum and Lindenbaum–Henkin constructions. Careful attention is paid to which properties of theories result in the presence of which rules of inference, and to restrictions on the sets of formulas to which the rules may be employed, restrictions (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Algebras of intervals and a logic of conditional assertions.Peter Milne - 2004 - Journal of Philosophical Logic 33 (5):497-548.
    Intervals in boolean algebras enter into the study of conditional assertions (or events) in two ways: directly, either from intuitive arguments or from Goodman, Nguyen and Walker's representation theorem, as suitable mathematical entities to bear conditional probabilities, or indirectly, via a representation theorem for the family of algebras associated with de Finetti's three-valued logic of conditional assertions/events. Further representation theorems forge a connection with rough sets. The representation theorems and an equivalent of the boolean prime ideal theorem yield an algebraic (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations