Switch to: References

Add citations

You must login to add citations.
  1. Abelian Logic and the Logics of Pointed Lattice-Ordered Varieties.Francesco Paoli, Matthew Spinks & Robert Veroff - 2008 - Logica Universalis 2 (2):209-233.
    We consider the class of pointed varieties of algebras having a lattice term reduct and we show that each such variety gives rise in a natural way, and according to a regular pattern, to at least three interesting logics. Although the mentioned class includes several logically and algebraically significant examples (e.g. Boolean algebras, MV algebras, Boolean algebras with operators, residuated lattices and their subvarieties, algebras from quantum logic or from depth relevant logic), we consider here in greater detail Abelian ℓ-groups, (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • On the Algebraizability of the Implicational Fragment of Abelian Logic.Sam Butchart & Susan Rogerson - 2014 - Studia Logica 102 (5):981-1001.
    In this paper we consider the implicational fragment of Abelian logic \ . We show that although the Abelian groups provide an semantics for the set of theorems of \ they do not for the associated consequence relation. We then show that the consequence relation is not algebraizable in the sense of Blok and Pigozzi . In the second part of the paper, we investigate an extension of \ in the same language and having the same set of theorems and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • From Games to Truth Functions: A Generalization of Giles’s Game.Christian G. Fermüller & Christoph Roschger - 2014 - Studia Logica 102 (2):389-410.
    Motivated by aspects of reasoning in theories of physics, Robin Giles defined a characterization of infinite valued Łukasiewicz logic in terms of a game that combines Lorenzen-style dialogue rules for logical connectives with a scheme for betting on results of dispersive experiments for evaluating atomic propositions. We analyze this game and provide conditions on payoff functions that allow us to extract many-valued truth functions from dialogue rules of a quite general form. Besides finite and infinite valued Łukasiewicz logics, also Meyer (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Algebraic Expansions of Logics.Miguel Campercholi, Diego Nicolás Castaño, José Patricio Díaz Varela & Joan Gispert - 2023 - Journal of Symbolic Logic 88 (1):74-92.
    An algebraically expandable (AE) class is a class of algebraic structures axiomatizable by sentences of the form $\forall \exists! \mathop{\boldsymbol {\bigwedge }}\limits p = q$. For a logic L algebraized by a quasivariety $\mathcal {Q}$ we show that the AE-subclasses of $\mathcal {Q}$ correspond to certain natural expansions of L, which we call algebraic expansions. These turn out to be a special case of the expansions by implicit connectives studied by X. Caicedo. We proceed to characterize all the AE-subclasses of (...)
    Download  
     
    Export citation  
     
    Bookmark