Switch to: References

Add citations

You must login to add citations.
  1. The Pauli Objection.Juan Leon & Lorenzo Maccone - 2017 - Foundations of Physics 47 (12):1597-1608.
    Schrödinger’s equation says that the Hamiltonian is the generator of time translations. This seems to imply that any reasonable definition of time operator must be conjugate to the Hamiltonian. Then both time and energy must have the same spectrum since conjugate operators are unitarily equivalent. Clearly this is not always true: normal Hamiltonians have lower bounded spectrum and often only have discrete eigenvalues, whereas we typically desire that time can take any real value. Pauli concluded that constructing a general a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Event ontology in quantum mechanics and the problem of emergence.Rodolfo Gambini & Jorge Pullin - unknown
    We introduce an ontology of objects and events that is particularly well suited for several interpretations of quantum mechanics. It leads to an important revision of the notion of matter and its implications. Within this context one can show that systems in entangled states present emergent new properties and downward causation where certain behavior of parts of the system are only determined by the state of the whole. Interpretations of quantum mechanics that admit such an event ontology solve the problem (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Assessing the Montevideo interpretation of quantum mechanics.Jeremy Butterfield - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part A):75-85.
    This paper gives a philosophical assessment of the Montevideo interpretation of quantum theory, advocated by Gambini, Pullin and co-authors. This interpretation has the merit of linking its proposal about how to solve the measurement problem to the search for quantum gravity: namely by suggesting that quantum gravity makes for fundamental limitations on the accuracy of clocks, which imply a type of decoherence that “collapses the wave-packet”. I begin by sketching the topics of decoherence, and quantum clocks, on which the interpretation (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Quantum mechanics, strong emergence and ontological non-reducibility.Rodolfo Gambini, Lucía Lewowicz & Jorge Pullin - 2015 - Foundations of Chemistry 17 (2):117-127.
    We show that a new interpretation of quantum mechanics, in which the notion of event is defined without reference to measurement or observers, allows to construct a quantum general ontology based on systems, states and events. Unlike the Copenhagen interpretation, it does not resort to elements of a classical ontology. The quantum ontology in turn allows us to recognize that a typical behavior of quantum systems exhibits strong emergence and ontological non-reducibility. Such phenomena are not exceptional but natural, and are (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • An axiomatic formulation of the Montevideo interpretation of quantum mechanics.Rodolfo Gambini, Luis Pedro García-Pintos & Jorge Pullin - 2011 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (4):256-263.
    We make a first attempt to axiomatically formulate the Montevideo interpretation of quantum mechanics. In this interpretation environmental decoherence is supplemented with loss of coherence due to the use of realistic clocks to measure time to solve the measurement problem. The resulting formulation is framed entirely in terms of quantum objects without having to invoke the existence of measurable classical quantities like the time in ordinary quantum mechanics. The formulation eliminates any privileged role to the measurement process giving an objective (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Selective Realism and the Framework/Interaction Distinction: A Taxonomy of Fundamental Physical Theories.Federico Benitez - 2019 - Foundations of Physics 49 (7):700-716.
    Following the proposal of a new kind of selective structural realism that uses as a basis the distinction between framework and interaction theories, this work discusses relevant applications in fundamental physics. An ontology for the different entities and properties of well-known theories is thus consistently built. The case of classical field theories—including general relativity as a classical theory of gravitation—is examined in detail, as well as the implications of the classification scheme for issues of realism in quantum mechanics. These applications (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations