Switch to: References

Add citations

You must login to add citations.
  1. Reverse Mathematics and the Coloring Number of Graphs.Matthew Jura - 2016 - Notre Dame Journal of Formal Logic 57 (1):27-44.
    We use methods of reverse mathematics to analyze the proof theoretic strength of a theorem involving the notion of coloring number. Classically, the coloring number of a graph $G=$ is the least cardinal $\kappa$ such that there is a well-ordering of $V$ for which below any vertex in $V$ there are fewer than $\kappa$ many vertices connected to it by $E$. We will study a theorem due to Komjáth and Milner, stating that if a graph is the union of $n$ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Domatic partitions of computable graphs.Matthew Jura, Oscar Levin & Tyler Markkanen - 2014 - Archive for Mathematical Logic 53 (1-2):137-155.
    Given a graph G, we say that a subset D of the vertex set V is a dominating set if it is near all the vertices, in that every vertex outside of D is adjacent to a vertex in D. A domatic k-partition of G is a partition of V into k dominating sets. In this paper, we will consider issues of computability related to domatic partitions of computable graphs. Our investigation will center on answering two types of questions for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Comparing the Strength of Diagonally Nonrecursive Functions in the Absence of Induction.François G. Dorais, Jeffry L. Hirst & Paul Shafer - 2015 - Journal of Symbolic Logic 80 (4):1211-1235.
    We prove that the statement “there is aksuch that for everyfthere is ak-bounded diagonally nonrecursive function relative tof” does not imply weak König’s lemma over${\rm{RC}}{{\rm{A}}_0} + {\rm{B\Sigma }}_2^0$. This answers a question posed by Simpson. A recursion-theoretic consequence is that the classic fact that everyk-bounded diagonally nonrecursive function computes a 2-bounded diagonally nonrecursive function may fail in the absence of${\rm{I\Sigma }}_2^0$.
    Download  
     
    Export citation  
     
    Bookmark   2 citations