Switch to: References

Add citations

You must login to add citations.
  1. Low upper bounds in the LR degrees.David Diamondstone - 2012 - Annals of Pure and Applied Logic 163 (3):314-320.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Randomness and lowness notions via open covers.Laurent Bienvenu & Joseph S. Miller - 2012 - Annals of Pure and Applied Logic 163 (5):506-518.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Relative Randomness and Cardinality.George Barmpalias - 2010 - Notre Dame Journal of Formal Logic 51 (2):195-205.
    A set $B\subseteq\mathbb{N}$ is called low for Martin-Löf random if every Martin-Löf random set is also Martin-Löf random relative to B . We show that a $\Delta^0_2$ set B is low for Martin-Löf random if and only if the class of oracles which compress less efficiently than B , namely, the class $\mathcal{C}^B=\{A\ |\ \forall n\ K^B(n)\leq^+ K^A(n)\}$ is countable (where K denotes the prefix-free complexity and $\leq^+$ denotes inequality modulo a constant. It follows that $\Delta^0_2$ is the largest arithmetical (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Kolmogorov complexity and computably enumerable sets.George Barmpalias & Angsheng Li - 2013 - Annals of Pure and Applied Logic 164 (12):1187-1200.
    Download  
     
    Export citation  
     
    Bookmark  
  • Elementary differences between the degrees of unsolvability and degrees of compressibility.George Barmpalias - 2010 - Annals of Pure and Applied Logic 161 (7):923-934.
    Given two infinite binary sequences A,B we say that B can compress at least as well as A if the prefix-free Kolmogorov complexity relative to B of any binary string is at most as much as the prefix-free Kolmogorov complexity relative to A, modulo a constant. This relation, introduced in Nies [14] and denoted by A≤LKB, is a measure of relative compressing power of oracles, in the same way that Turing reducibility is a measure of relative information. The equivalence classes (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Π 1 0 classes, L R degrees and Turing degrees.George Barmpalias, Andrew E. M. Lewis & Frank Stephan - 2008 - Annals of Pure and Applied Logic 156 (1):21-38.
    We say that A≤LRB if every B-random set is A-random with respect to Martin–Löf randomness. We study this relation and its interactions with Turing reducibility, classes, hyperimmunity and other recursion theoretic notions.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Algorithmic Randomness and Measures of Complexity.George Barmpalias - 2013 - Bulletin of Symbolic Logic 19 (3):318-350.
    We survey recent advances on the interface between computability theory and algorithmic randomness, with special attention on measures of relative complexity. We focus on reducibilities that measure the initial segment complexity of reals and the power of reals to compress strings, when they are used as oracles. The results are put into context and several connections are made with various central issues in modern algorithmic randomness and computability.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Almost everywhere domination and superhighness.Stephen G. Simpson - 2007 - Mathematical Logic Quarterly 53 (4):462-482.
    Let ω be the set of natural numbers. For functions f, g: ω → ω, we say f is dominated by g if f < g for all but finitely many n ∈ ω. We consider the standard “fair coin” probability measure on the space 2ω of in-finite sequences of 0's and 1's. A Turing oracle B is said to be almost everywhere dominating if, for measure 1 many X ∈ 2ω, each function which is Turing computable from X is (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The K -Degrees, Low for K Degrees,and Weakly Low for K Sets.Joseph S. Miller - 2009 - Notre Dame Journal of Formal Logic 50 (4):381-391.
    We call A weakly low for K if there is a c such that $K^A(\sigma)\geq K(\sigma)-c$ for infinitely many σ; in other words, there are infinitely many strings that A does not help compress. We prove that A is weakly low for K if and only if Chaitin's Ω is A-random. This has consequences in the K-degrees and the low for K (i.e., low for random) degrees. Furthermore, we prove that the initial segment prefix-free complexity of 2-random reals is infinitely (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Mass problems and hyperarithmeticity.Joshua A. Cole & Stephen G. Simpson - 2007 - Journal of Mathematical Logic 7 (2):125-143.
    A mass problem is a set of Turing oracles. If P and Q are mass problems, we say that P is weakly reducible to Q if for all Y ∈ Q there exists X ∈ P such that X is Turing reducible to Y. A weak degree is an equivalence class of mass problems under mutual weak reducibility. Let [Formula: see text] be the lattice of weak degrees of mass problems associated with nonempty [Formula: see text] subsets of the Cantor (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations