Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Algorithmic Randomness and Measures of Complexity.George Barmpalias - 2013 - Bulletin of Symbolic Logic 19 (3):318-350.
    We survey recent advances on the interface between computability theory and algorithmic randomness, with special attention on measures of relative complexity. We focus on reducibilities that measure the initial segment complexity of reals and the power of reals to compress strings, when they are used as oracles. The results are put into context and several connections are made with various central issues in modern algorithmic randomness and computability.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Prefix and plain Kolmogorov complexity characterizations of 2-randomness: simple proofs.Bruno Bauwens - 2015 - Archive for Mathematical Logic 54 (5-6):615-629.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Randomness and computability: Open questions.Joseph S. Miller & André Nies - 2006 - Bulletin of Symbolic Logic 12 (3):390-410.
    It is time for a new paper about open questions in the currently very active area of randomness and computability. Ambos-Spies and Kučera presented such a paper in 1999 [1]. All the question in it have been solved, except for one: is KL-randomness different from Martin-Löf randomness? This question is discussed in Section 6.Not all the questions are necessarily hard—some simply have not been tried seriously. When we think a question is a major one, and therefore likely to be hard, (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Cone avoidance and randomness preservation.Stephen G. Simpson & Frank Stephan - 2015 - Annals of Pure and Applied Logic 166 (6):713-728.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Kolmogorov complexity and computably enumerable sets.George Barmpalias & Angsheng Li - 2013 - Annals of Pure and Applied Logic 164 (12):1187-1200.
    Download  
     
    Export citation  
     
    Bookmark  
  • Relative Randomness and Cardinality.George Barmpalias - 2010 - Notre Dame Journal of Formal Logic 51 (2):195-205.
    A set $B\subseteq\mathbb{N}$ is called low for Martin-Löf random if every Martin-Löf random set is also Martin-Löf random relative to B . We show that a $\Delta^0_2$ set B is low for Martin-Löf random if and only if the class of oracles which compress less efficiently than B , namely, the class $\mathcal{C}^B=\{A\ |\ \forall n\ K^B(n)\leq^+ K^A(n)\}$ is countable (where K denotes the prefix-free complexity and $\leq^+$ denotes inequality modulo a constant. It follows that $\Delta^0_2$ is the largest arithmetical (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Characterizing strong randomness via Martin-Löf randomness.Liang Yu - 2012 - Annals of Pure and Applied Logic 163 (3):214-224.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Equivalence of Definitions of Algorithmic Randomness.Christopher Porter - 2021 - Philosophia Mathematica 29 (2):153–194.
    In this paper, I evaluate the claim that the equivalence of multiple intensionally distinct definitions of random sequence provides evidence for the claim that these definitions capture the intuitive conception of randomness, concluding that the former claim is false. I then develop an alternative account of the significance of randomness-theoretic equivalence results, arguing that they are instances of a phenomenon I refer to as schematic equivalence. On my account, this alternative approach has the virtue of providing the plurality of definitions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On reals with -bounded complexity and compressive power.Ian Herbert - 2016 - Journal of Symbolic Logic 81 (3):833-855.
    The Kolmogorov complexity of a finite binary string is the length of the shortest description of the string. This gives rise to some ‘standard’ lowness notions for reals: A isK-trivial if its initial segments have the lowest possible complexity and A is low forKif using A as an oracle does not decrease the complexity of strings by more than a constant factor. We weaken these notions by requiring the defining inequalities to hold only up to all${\rm{\Delta }}_2^0$orders, and call the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Low upper bounds in the LR degrees.David Diamondstone - 2012 - Annals of Pure and Applied Logic 163 (3):314-320.
    Download  
     
    Export citation  
     
    Bookmark   4 citations