Switch to: References

Add citations

You must login to add citations.
  1. Assertion, denial and non-classical theories.Greg Restall - 2012 - In Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.), Paraconsistency: Logic and Applications. Dordrecht, Netherland: Springer. pp. 81--99.
    In this paper I urge friends of truth-value gaps and truth-value gluts – proponents of paracomplete and paraconsistent logics – to consider theories not merely as sets of sentences, but as pairs of sets of sentences, or what I call ‘bitheories,’ which keep track not only of what holds according to the theory, but also what fails to hold according to the theory. I explain the connection between bitheories, sequents, and the speech acts of assertion and denial. I illustrate the (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Logical Nihilism and the Logic of ‘prem’.Andreas Fjellstad - forthcoming - Logic and Logical Philosophy:1.
    As the final component of a chain of reasoning intended to take us all the way to logical nihilism, Russell (2018) presents the atomic sentence ‘prem’ which is supposed to be true when featuring as premise in an argument and false when featuring as conclusion in an argument. Such a sentence requires a non-reflexive logic and an endnote by Russell (2018) could easily leave the reader with the impression that going non-reflexive suffices for logical nihilism. This paper shows how one (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Wittgenstein on Incompleteness Makes Paraconsistent Sense.Francesco Berto - 2012 - In Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.), Paraconsistency: Logic and Applications. Dordrecht, Netherland: Springer. pp. 257--276.
    I provide an interpretation of Wittgenstein's much criticized remarks on Gödel's First Incompleteness Theorem in the light of paraconsistent arithmetics: in taking Gödel's proof as a paradoxical derivation, Wittgenstein was right, given his deliberate rejection of the standard distinction between theory and metatheory. The reasoning behind the proof of the truth of the Gödel sentence is then performed within the formal system itself, which turns out to be inconsistent. I show that the models of paraconsistent arithmetics (obtained via the Meyer-Mortensen (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Circumscribing with sets.Donald Perlis - 1987 - Artificial Intelligence 31 (2):201-211.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A logic of abstraction related to finite constructive number classes.Andrea Cantini - 1991 - Archive for Mathematical Logic 31 (1):69-83.
    Download  
     
    Export citation  
     
    Bookmark   1 citation