Switch to: References

Citations of:

Ramsey-like cardinals

Journal of Symbolic Logic 76 (2):519 - 540 (2011)

Add citations

You must login to add citations.
  1. Indestructibility properties of Ramsey and Ramsey-like cardinals.Victoria Gitman & Thomas A. Johnstone - 2022 - Annals of Pure and Applied Logic 173 (6):103106.
    Download  
     
    Export citation  
     
    Bookmark  
  • Σ1(κ)-definable subsets of H.Philipp Lücke, Ralf Schindler & Philipp Schlicht - 2017 - Journal of Symbolic Logic 82 (3):1106-1131.
    We study Σ1-definable sets in the presence of large cardinals. Our results show that the existence of a Woodin cardinal and a measurable cardinal above it imply that no well-ordering of the reals is Σ1-definable, the set of all stationary subsets of ω1 is not Σ1-definable and the complement of every Σ1-definable Bernstein subset of ${}_{}^{{\omega _1}}\omega _1^{}$ is not Σ1-definable. In contrast, we show that the existence of a Woodin cardinal is compatible with the existence of a Σ1-definable well-ordering (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Large cardinals need not be large in HOD.Yong Cheng, Sy-David Friedman & Joel David Hamkins - 2015 - Annals of Pure and Applied Logic 166 (11):1186-1198.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Inner models with large cardinal features usually obtained by forcing.Arthur W. Apter, Victoria Gitman & Joel David Hamkins - 2012 - Archive for Mathematical Logic 51 (3-4):257-283.
    We construct a variety of inner models exhibiting features usually obtained by forcing over universes with large cardinals. For example, if there is a supercompact cardinal, then there is an inner model with a Laver indestructible supercompact cardinal. If there is a supercompact cardinal, then there is an inner model with a supercompact cardinal κ for which 2κ = κ+, another for which 2κ = κ++ and another in which the least strongly compact cardinal is supercompact. If there is a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Greatly Erdős cardinals with some generalizations to the Chang and Ramsey properties.I. Sharpe & P. D. Welch - 2011 - Annals of Pure and Applied Logic 162 (11):863-902.
    • We define a notion of order of indiscernibility type of a structure by analogy with Mitchell order on measures; we use this to define a hierarchy of strong axioms of infinity defined through normal filters, the α-weakly Erdős hierarchy. The filters in this hierarchy can be seen to be generated by sets of ordinals where these indiscernibility orders on structures dominate the canonical functions.• The limit axiom of this is that of greatly Erdős and we use it to calibrate (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Weakly measurable cardinals.Jason A. Schanker - 2011 - Mathematical Logic Quarterly 57 (3):266-280.
    In this article, we introduce the notion of weakly measurable cardinal, a new large cardinal concept obtained by weakening the familiar concept of a measurable cardinal. Specifically, a cardinal κ is weakly measurable if for any collection equation image containing at most κ+ many subsets of κ, there exists a nonprincipal κ-complete filter on κ measuring all sets in equation image. Every measurable cardinal is weakly measurable, but a weakly measurable cardinal need not be measurable. Moreover, while the GCH cannot (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The consistency strength of the perfect set property for universally baire sets of reals.Ralf Schindler & Trevor M. Wilson - 2022 - Journal of Symbolic Logic 87 (2):508-526.
    We show that the statement “every universally Baire set of reals has the perfect set property” is equiconsistent modulo ZFC with the existence of a cardinal that we call virtually Shelah for supercompactness. These cardinals resemble Shelah cardinals and Shelah-for-supercompactness cardinals but are much weaker: if $0^\sharp $ exists then every Silver indiscernible is VSS in L. We also show that the statement $\operatorname {\mathrm {uB}} = {\boldsymbol {\Delta }}^1_2$, where $\operatorname {\mathrm {uB}}$ is the pointclass of all universally Baire (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Partial near supercompactness.Jason Aaron Schanker - 2013 - Annals of Pure and Applied Logic 164 (2):67-85.
    A cardinal κ is nearly θ-supercompact if for every A⊆θ, there exists a transitive M⊨ZFC− closed under θ and j″θ∈N.2 This concept strictly refines the θ-supercompactness hierarchy as every θ-supercompact cardinal is nearly θ-supercompact, and every nearly 2θ<κ-supercompact cardinal κ is θ-supercompact. Moreover, if κ is a θ-supercompact cardinal for some θ such that θ<κ=θ, we can move to a forcing extension preserving all cardinals below θ++ where κ remains θ-supercompact but is not nearly θ+-supercompact. We will also show that (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Small models, large cardinals, and induced ideals.Peter Holy & Philipp Lücke - 2021 - Annals of Pure and Applied Logic 172 (2):102889.
    We show that many large cardinal notions up to measurability can be characterized through the existence of certain filters for small models of set theory. This correspondence will allow us to obtain a canonical way in which to assign ideals to many large cardinal notions. This assignment coincides with classical large cardinal ideals whenever such ideals had been defined before. Moreover, in many important cases, relations between these ideals reflect the ordering of the corresponding large cardinal properties both under direct (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Subcompact Cardinals, Type Omission, and Ladder Systems.Yair Hayut & Menachem Magidor - 2022 - Journal of Symbolic Logic 87 (3):1111-1129.
    We provide a model theoretical and tree property-like characterization of $\lambda $ - $\Pi ^1_1$ -subcompactness and supercompactness. We explore the behavior of these combinatorial principles at accessible cardinals.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Virtual large cardinals.Victoria Gitman & Ralf Schindler - 2018 - Annals of Pure and Applied Logic 169 (12):1317-1334.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • What is the theory without power set?Victoria Gitman, Joel David Hamkins & Thomas A. Johnstone - 2016 - Mathematical Logic Quarterly 62 (4-5):391-406.
    We show that the theory, consisting of the usual axioms of but with the power set axiom removed—specifically axiomatized by extensionality, foundation, pairing, union, infinity, separation, replacement and the assertion that every set can be well‐ordered—is weaker than commonly supposed and is inadequate to establish several basic facts often desired in its context. For example, there are models of in which ω1 is singular, in which every set of reals is countable, yet ω1 exists, in which there are sets of (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Ideal Operators and Higher Indescribability.Brent Cody & Peter Holy - forthcoming - Journal of Symbolic Logic:1-39.
    We investigate properties of the ineffability and the Ramsey operator, and a common generalization of those that was introduced by the second author, with respect to higher indescribability, as introduced by the first author. This extends earlier investigations on the ineffability operator by James Baumgartner, and on the Ramsey operator by Qi Feng, by Philip Welch et al., and by the first author.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Easton's theorem for Ramsey and strongly Ramsey cardinals.Brent Cody & Victoria Gitman - 2015 - Annals of Pure and Applied Logic 166 (9):934-952.
    Download  
     
    Export citation  
     
    Bookmark   3 citations