Switch to: References

Add citations

You must login to add citations.
  1. Intrinsic Justifications for Large-Cardinal Axioms.Rupert McCallum - 2021 - Philosophia Mathematica 29 (2):195-213.
    ABSTRACT We shall defend three philosophical theses about the extent of intrinsic justification based on various technical results. We shall present a set of theorems which indicate intriguing structural similarities between a family of “weak” reflection principles roughly at the level of those considered by Tait and Koellner and a family of “strong” reflection principles roughly at the level of those of Welch and Roberts, which we claim to lend support to the view that the stronger reflection principles are intrinsically (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Forcing and the Universe of Sets: Must We Lose Insight?Neil Barton - 2020 - Journal of Philosophical Logic 49 (4):575-612.
    A central area of current philosophical debate in the foundations of mathematics concerns whether or not there is a single, maximal, universe of set theory. Universists maintain that there is such a universe, while Multiversists argue that there are many universes, no one of which is ontologically privileged. Often forcing constructions that add subsets to models are cited as evidence in favour of the latter. This paper informs this debate by analysing ways the Universist might interpret this discourse that seems (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Games and Ramsey-like cardinals.Dan Saattrup Nielsen & Philip Welch - 2019 - Journal of Symbolic Logic 84 (1):408-437.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The consistency strength of the perfect set property for universally baire sets of reals.Ralf Schindler & Trevor M. Wilson - 2022 - Journal of Symbolic Logic 87 (2):508-526.
    We show that the statement “every universally Baire set of reals has the perfect set property” is equiconsistent modulo ZFC with the existence of a cardinal that we call virtually Shelah for supercompactness. These cardinals resemble Shelah cardinals and Shelah-for-supercompactness cardinals but are much weaker: if $0^\sharp $ exists then every Silver indiscernible is VSS in L. We also show that the statement $\operatorname {\mathrm {uB}} = {\boldsymbol {\Delta }}^1_2$, where $\operatorname {\mathrm {uB}}$ is the pointclass of all universally Baire (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Weakly remarkable cardinals, erdős cardinals, and the generic vopěnka principle.Trevor M. Wilson - 2019 - Journal of Symbolic Logic 84 (4):1711-1721.
    We consider a weak version of Schindler’s remarkable cardinals that may fail to be ${{\rm{\Sigma }}_2}$-reflecting. We show that the ${{\rm{\Sigma }}_2}$-reflecting weakly remarkable cardinals are exactly the remarkable cardinals, and that the existence of a non-${{\rm{\Sigma }}_2}$-reflecting weakly remarkable cardinal has higher consistency strength: it is equiconsistent with the existence of an ω-Erdős cardinal. We give an application involving gVP, the generic Vopěnka principle defined by Bagaria, Gitman, and Schindler. Namely, we show that gVP + “Ord is not ${{\rm{\Delta (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Generic Vopěnka cardinals and models of ZF with few $$\aleph _1$$ ℵ 1 -Suslin sets.Trevor M. Wilson - 2019 - Archive for Mathematical Logic 58 (7-8):841-856.
    We define a generic Vopěnka cardinal to be an inaccessible cardinal \ such that for every first-order language \ of cardinality less than \ and every set \ of \-structures, if \ and every structure in \ has cardinality less than \, then an elementary embedding between two structures in \ exists in some generic extension of V. We investigate connections between generic Vopěnka cardinals in models of ZFC and the number and complexity of \-Suslin sets of reals in models (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reinhardt cardinals and iterates of V.Farmer Schlutzenberg - 2022 - Annals of Pure and Applied Logic 173 (2):103056.
    Download  
     
    Export citation  
     
    Bookmark   1 citation