Switch to: References

Add citations

You must login to add citations.
  1. Language Agents Reduce the Risk of Existential Catastrophe.Simon Goldstein & Cameron Domenico Kirk-Giannini - 2023 - AI and Society:1-11.
    Recent advances in natural language processing have given rise to a new kind of AI architecture: the language agent. By repeatedly calling an LLM to perform a variety of cognitive tasks, language agents are able to function autonomously to pursue goals specified in natural language and stored in a human-readable format. Because of their architecture, language agents exhibit behavior that is predictable according to the laws of folk psychology: they function as though they have desires and beliefs, and then make (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Are Language Models More Like Libraries or Like Librarians? Bibliotechnism, the Novel Reference Problem, and the Attitudes of LLMs.Harvey Lederman & Kyle Mahowald - 2024 - Transactions of the Association for Computational Linguistics 12:1087-1103.
    Are LLMs cultural technologies like photocopiers or printing presses, which transmit information but cannot create new content? A challenge for this idea, which we call bibliotechnism, is that LLMs generate novel text. We begin with a defense of bibliotechnism, showing how even novel text may inherit its meaning from original human-generated text. We then argue that bibliotechnism faces an independent challenge from examples in which LLMs generate novel reference, using new names to refer to new entities. Such examples could be (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Shutdown Problem: An AI Engineering Puzzle for Decision Theorists.Elliott Thornley - forthcoming - Philosophical Studies:1-28.
    I explain the shutdown problem: the problem of designing artificial agents that (1) shut down when a shutdown button is pressed, (2) don’t try to prevent or cause the pressing of the shutdown button, and (3) otherwise pursue goals competently. I prove three theorems that make the difficulty precise. These theorems show that agents satisfying some innocuous-seeming conditions will often try to prevent or cause the pressing of the shutdown button, even in cases where it’s costly to do so. And (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Consciousness without biology: An argument from anticipating scientific progress.Leonard Dung - manuscript
    I develop the anticipatory argument for the view that it is nomologically possible that some non-biological creatures are phenomenally conscious, including conventional, silicon-based AI systems. This argument rests on the general idea that we should make our beliefs conform to the outcomes of an ideal scientific process and that such an ideal scientific process would attribute consciousness to some possible AI systems. This kind of ideal scientific process is an ideal application of the iterative natural kind (INK) strategy, according to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Group Prioritarianism: Why AI should not replace humanity.Frank Hong - 2024 - Philosophical Studies:1-19.
    If a future AI system can enjoy far more well-being than a human per resource, what would be the best way to allocate resources between these future AI and our future descendants? It is obvious that on total utilitarianism, one should give everything to the AI. However, it turns out that every Welfarist axiology on the market also gives this same recommendation, at least if we assume consequentialism. Without resorting to non-consequentialist normative theories that suggest that we ought not always (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Is Alignment Unsafe?Cameron Domenico Kirk-Giannini - 2024 - Philosophy and Technology 37 (110):1–4.
    Inchul Yum (2024) argues that the widespread adoption of language agent architectures would likely increase the risk posed by AI by simplifying the process of aligning artificial systems with human values and thereby making it easier for malicious actors to use them to cause a variety of harms. Yum takes this to be an example of a broader phenomenon: progress on the alignment problem is likely to be net safety-negative because it makes artificial systems easier for malicious actors to control. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Deception and manipulation in generative AI.Christian Tarsney - forthcoming - Philosophical Studies.
    Large language models now possess human-level linguistic abilities in many contexts. This raises the concern that they can be used to deceive and manipulate on unprecedented scales, for instance spreading political misinformation on social media. In future, agentic AI systems might also deceive and manipulate humans for their own purposes. In this paper, first, I argue that AI-generated content should be subject to stricter standards against deception and manipulation than we ordinarily apply to humans. Second, I offer new characterizations of (...)
    Download  
     
    Export citation  
     
    Bookmark