Switch to: References

Add citations

You must login to add citations.
  1. Classification from a computable viewpoint.Wesley Calvert & Julia F. Knight - 2006 - Bulletin of Symbolic Logic 12 (2):191-218.
    Classification is an important goal in many branches of mathematics. The idea is to describe the members of some class of mathematical objects, up to isomorphism or other important equivalence, in terms of relatively simple invariants. Where this is impossible, it is useful to have concrete results saying so. In model theory and descriptive set theory, there is a large body of work showing that certain classes of mathematical structures admit classification while others do not. In the present paper, we (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Effective categoricity of equivalence structures.Wesley Calvert, Douglas Cenzer, Valentina Harizanov & Andrei Morozov - 2006 - Annals of Pure and Applied Logic 141 (1):61-78.
    We investigate effective categoricity of computable equivalence structures . We show that is computably categorical if and only if has only finitely many finite equivalence classes, or has only finitely many infinite classes, bounded character, and at most one finite k such that there are infinitely many classes of size k. We also prove that all computably categorical structures are relatively computably categorical, that is, have computably enumerable Scott families of existential formulas. Since all computable equivalence structures are relatively categorical, (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • The complexity of orbits of computably enumerable sets.Peter A. Cholak, Rodney Downey & Leo A. Harrington - 2008 - Bulletin of Symbolic Logic 14 (1):69 - 87.
    The goal of this paper is to announce there is a single orbit of the c.e. sets with inclusion, ε, such that the question of membership in this orbit is ${\Sigma _1^1 }$ -complete. This result and proof have a number of nice corollaries: the Scott rank of ε is $\omega _1^{{\rm{CK}}}$ + 1; not all orbits are elementarily definable; there is no arithmetic description of all orbits of ε; for all finite α ≥ 9, there is a properly $\Delta (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Scott sentences for certain groups.Julia F. Knight & Vikram Saraph - 2018 - Archive for Mathematical Logic 57 (3-4):453-472.
    We give Scott sentences for certain computable groups, and we use index set calculations as a way of checking that our Scott sentences are as simple as possible. We consider finitely generated groups and torsion-free abelian groups of finite rank. For both kinds of groups, the computable ones all have computable \ Scott sentences. Sometimes we can do better. In fact, the computable finitely generated groups that we have studied all have Scott sentences that are “computable d-\” sentence and a (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Intrinsic bounds on complexity and definability at limit levels.John Chisholm, Ekaterina B. Fokina, Sergey S. Goncharov, Valentina S. Harizanov, Julia F. Knight & Sara Quinn - 2009 - Journal of Symbolic Logic 74 (3):1047-1060.
    We show that for every computable limit ordinal α, there is a computable structure A that is $\Delta _\alpha ^0 $ categorical, but not relatively $\Delta _\alpha ^0 $ categorical (equivalently. it does not have a formally $\Sigma _\alpha ^0 $ Scott family). We also show that for every computable limit ordinal a, there is a computable structure A with an additional relation R that is intrinsically $\Sigma _\alpha ^0 $ on A. but not relatively intrinsically $\Sigma _\alpha ^0 $ (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Categoricity of computable infinitary theories.W. Calvert, S. S. Goncharov, J. F. Knight & Jessica Millar - 2009 - Archive for Mathematical Logic 48 (1):25-38.
    Computable structures of Scott rank ${\omega_1^{CK}}$ are an important boundary case for structural complexity. While every countable structure is determined, up to isomorphism, by a sentence of ${\mathcal{L}_{\omega_1 \omega}}$ , this sentence may not be computable. We give examples, in several familiar classes of structures, of computable structures with Scott rank ${\omega_1^{CK}}$ whose computable infinitary theories are each ${\aleph_0}$ -categorical. General conditions are given, covering many known methods for constructing computable structures with Scott rank ${\omega_1^{CK}}$ , which guarantee that the (...)
    Download  
     
    Export citation  
     
    Bookmark