Switch to: References

Add citations

You must login to add citations.
  1. Linear orders with distinguished function symbol.Douglas Cenzer, Barbara F. Csima & Bakhadyr Khoussainov - 2009 - Archive for Mathematical Logic 48 (1):63-76.
    We consider certain linear orders with a function on them, and discuss for which types of functions the resulting structure is or is not computably categorical. Particularly, we consider computable copies of the rationals with a fixed-point free automorphism, and also ω with a non-decreasing function.
    Download  
     
    Export citation  
     
    Bookmark  
  • PAC learning, VC dimension, and the arithmetic hierarchy.Wesley Calvert - 2015 - Archive for Mathematical Logic 54 (7-8):871-883.
    We compute that the index set of PAC-learnable concept classes is m-complete Σ30\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma^{0}_{3}}$$\end{document} within the set of indices for all concept classes of a reasonable form. All concept classes considered are computable enumerations of computable Π10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^{0}_{1}}$$\end{document} classes, in a sense made precise here. This family of concept classes is sufficient to cover all standard examples, and also has the property that PAC learnability (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Scott sentences for equivalence structures.Sara B. Quinn - 2020 - Archive for Mathematical Logic 59 (3-4):453-460.
    For a computable structure \, if there is a computable infinitary Scott sentence, then the complexity of this sentence gives an upper bound for the complexity of the index set \\). If we can also show that \\) is m-complete at that level, then there is a correspondence between the complexity of the index set and the complexity of a Scott sentence for the structure. There are results that suggest that these complexities will always match. However, it was shown in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Σ 1 0 and Π 1 0 equivalence structures.Douglas Cenzer, Valentina Harizanov & Jeffrey B. Remmel - 2011 - Annals of Pure and Applied Logic 162 (7):490-503.
    We study computability theoretic properties of and equivalence structures and how they differ from computable equivalence structures or equivalence structures that belong to the Ershov difference hierarchy. Our investigation includes the complexity of isomorphisms between equivalence structures and between equivalence structures.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Embeddings of Computable Structures.Asher M. Kach, Oscar Levin & Reed Solomon - 2010 - Notre Dame Journal of Formal Logic 51 (1):55-68.
    We study what the existence of a classical embedding between computable structures implies about the existence of computable embeddings. In particular, we consider the effect of fixing and varying the computable presentations of the computable structures.
    Download  
     
    Export citation  
     
    Bookmark  
  • Equivalence structures and isomorphisms in the difference hierarchy.Douglas Cenzer, Geoffrey LaForte & Jeffrey Remmel - 2009 - Journal of Symbolic Logic 74 (2):535-556.
    We examine the effective categoricity of equivalence structures via Ershov's difference hierarchy. We explore various kinds of categoricity available by distinguishing three different notions of isomorphism available in this hierarchy. We prove several results relating our notions of categoricity to computable equivalence relations: for example, we show that, for such relations, computable categoricity is equivalent to our notion of weak ω-c.e. categoricity, and that $\Delta _2^0 $ -categoricity is equivalent to our notion of graph-ω-c.e. categoricity.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Effective categoricity of Abelian p -groups.Wesley Calvert, Douglas Cenzer, Valentina S. Harizanov & Andrei Morozov - 2009 - Annals of Pure and Applied Logic 159 (1-2):187-197.
    We investigate effective categoricity of computable Abelian p-groups . We prove that all computably categorical Abelian p-groups are relatively computably categorical, that is, have computably enumerable Scott families of existential formulas. We investigate which computable Abelian p-groups are categorical and relatively categorical.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Preface.Douglas Cenzer, Valentina Harizanov, David Marker & Carol Wood - 2009 - Archive for Mathematical Logic 48 (1):1-6.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computability-theoretic categoricity and Scott families.Ekaterina Fokina, Valentina Harizanov & Daniel Turetsky - 2019 - Annals of Pure and Applied Logic 170 (6):699-717.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Friedberg enumeration of equivalence structures.Rodney G. Downey, Alexander G. Melnikov & Keng Meng Ng - 2017 - Journal of Mathematical Logic 17 (2):1750008.
    We solve a problem posed by Goncharov and Knight 639–681, 757]). More specifically, we produce an effective Friedberg enumeration of computable equivalence structures, up to isomorphism. We also prove that there exists an effective Friedberg enumeration of all isomorphism types of infinite computable equivalence structures.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Isomorphism relations on computable structures.Ekaterina B. Fokina, Sy-David Friedman, Valentina Harizanov, Julia F. Knight, Charles Mccoy & Antonio Montalbán - 2012 - Journal of Symbolic Logic 77 (1):122-132.
    We study the complexity of the isomorphism relation on classes of computable structures. We use the notion of FF-reducibility introduced in [9] to show completeness of the isomorphism relation on many familiar classes in the context of all ${\mathrm{\Sigma }}_{1}^{1}$ equivalence relations on hyperarithmetical subsets of ω.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • On Σ1 1 equivalence relations over the natural numbers.Ekaterina B. Fokina & Sy-David Friedman - 2012 - Mathematical Logic Quarterly 58 (1-2):113-124.
    We study the structure of Σ11 equivalence relations on hyperarithmetical subsets of ω under reducibilities given by hyperarithmetical or computable functions, called h-reducibility and FF-reducibility, respectively. We show that the structure is rich even when one fixes the number of properly equation imagei.e., Σ11 but not equation image equivalence classes. We also show the existence of incomparable Σ11 equivalence relations that are complete as subsets of ω × ω with respect to the corresponding reducibility on sets. We study complete Σ11 (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Degrees of bi-embeddable categoricity of equivalence structures.Nikolay Bazhenov, Ekaterina Fokina, Dino Rossegger & Luca San Mauro - 2019 - Archive for Mathematical Logic 58 (5-6):543-563.
    We study the algorithmic complexity of embeddings between bi-embeddable equivalence structures. We define the notions of computable bi-embeddable categoricity, \ bi-embeddable categoricity, and degrees of bi-embeddable categoricity. These notions mirror the classical notions used to study the complexity of isomorphisms between structures. We show that the notions of \ bi-embeddable categoricity and relative \ bi-embeddable categoricity coincide for equivalence structures for \. We also prove that computable equivalence structures have degree of bi-embeddable categoricity \, or \. We furthermore obtain results (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Generalization of Shapiro’s theorem to higher arities and noninjective notations.Dariusz Kalociński & Michał Wrocławski - 2022 - Archive for Mathematical Logic 62 (1):257-288.
    In the framework of Stewart Shapiro, computations are performed directly on strings of symbols (numerals) whose abstract numerical interpretation is determined by a notation. Shapiro showed that a total unary function (unary relation) on natural numbers is computable in every injective notation if and only if it is almost constant or almost identity function (finite or co-finite set). We obtain a syntactic generalization of this theorem, in terms of quantifier-free definability, for functions and relations relatively intrinsically computable on certain types (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the isomorphism problem for some classes of computable algebraic structures.Valentina S. Harizanov, Steffen Lempp, Charles F. D. McCoy, Andrei S. Morozov & Reed Solomon - 2022 - Archive for Mathematical Logic 61 (5):813-825.
    We establish that the isomorphism problem for the classes of computable nilpotent rings, distributive lattices, nilpotent groups, and nilpotent semigroups is \-complete, which is as complicated as possible. The method we use is based on uniform effective interpretations of computable binary relations into computable structures from the corresponding algebraic classes.
    Download  
     
    Export citation  
     
    Bookmark  
  • Classifications of Computable Structures.Karen Lange, Russell Miller & Rebecca M. Steiner - 2018 - Notre Dame Journal of Formal Logic 59 (1):35-59.
    Let K be a family of structures, closed under isomorphism, in a fixed computable language. We consider effective lists of structures from K such that every structure in K is isomorphic to exactly one structure on the list. Such a list is called a computable classification of K, up to isomorphism. Using the technique of Friedberg enumeration, we show that there is a computable classification of the family of computable algebraic fields and that with a 0'-oracle, we can obtain similar (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Computable shuffle sums of ordinals.Asher M. Kach - 2008 - Archive for Mathematical Logic 47 (3):211-219.
    The main result is that for sets ${S \subseteq \omega + 1}$ , the following are equivalent: The shuffle sum σ(S) is computable.The set S is a limit infimum set, i.e., there is a total computable function g(x, t) such that ${f(x) = \lim inf_t g(x, t)}$ enumerates S.The set S is a limitwise monotonic set relative to 0′, i.e., there is a total 0′-computable function ${\tilde{g}(x, t)}$ satisfying ${\tilde{g}(x, t) \leq \tilde{g}(x, t+1)}$ such that ${{\tilde{f}(x) = \lim_t \tilde{g}(x, t)}}$ (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Cohesive powers of structures.Valentina Harizanov & Keshav Srinivasan - 2024 - Archive for Mathematical Logic 63 (5):679-702.
    A cohesive power of a structure is an effective analog of the classical ultrapower of a structure. We start with a computable structure, and consider its effective power over a cohesive set of natural numbers. A cohesive set is an infinite set of natural numbers that is indecomposable with respect to computably enumerable sets. It plays the role of an ultrafilter, and the elements of a cohesive power are the equivalence classes of certain partial computable functions determined by the cohesive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Space complexity of Abelian groups.Douglas Cenzer, Rodney G. Downey, Jeffrey B. Remmel & Zia Uddin - 2009 - Archive for Mathematical Logic 48 (1):115-140.
    We develop a theory of LOGSPACE structures and apply it to construct a number of examples of Abelian Groups which have LOGSPACE presentations. We show that all computable torsion Abelian groups have LOGSPACE presentations and we show that the groups ${\mathbb {Z}, Z(p^{\infty})}$ , and the additive group of the rationals have LOGSPACE presentations over a standard universe such as the tally representation and the binary representation of the natural numbers. We also study the effective categoricity of such groups. For (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Abelian p-groups and the Halting problem.Rodney Downey, Alexander G. Melnikov & Keng Meng Ng - 2016 - Annals of Pure and Applied Logic 167 (11):1123-1138.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On Δ 2 0 -categoricity of equivalence relations.Rod Downey, Alexander G. Melnikov & Keng Meng Ng - 2015 - Annals of Pure and Applied Logic 166 (9):851-880.
    Download  
     
    Export citation  
     
    Bookmark   4 citations