Switch to: References

Citations of:

Mathematics : a very short introduction

New York, USA: Oxford University Press (2002)

Add citations

You must login to add citations.
  1. Philosophy of mathematics: Making a fresh start.Carlo Cellucci - 2013 - Studies in History and Philosophy of Science Part A 44 (1):32-42.
    The paper distinguishes between two kinds of mathematics, natural mathematics which is a result of biological evolution and artificial mathematics which is a result of cultural evolution. On this basis, it outlines an approach to the philosophy of mathematics which involves a new treatment of the method of mathematics, the notion of demonstration, the questions of discovery and justification, the nature of mathematical objects, the character of mathematical definition, the role of intuition, the role of diagrams in mathematics, and the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Externalismo semántico y subdeterminación empírica. Respuesta a un desafío al realismo científico.Marc Jiménez Rolland - 2017 - Dissertation, Universidad Autónoma Metropolitana
    I offer an explicit account of the underdetermination thesis as well as of the many challenges it poses to scientific realism; a way to answer to these challenges is explored and outlined, by shifting attention to the content of theories. I argue that, even if we have solid grounds (as I contend we do) to support that some varieties of the underdetermination thesis are true, scientific realism can still offer an adequate picture of the aims and achievements of science.
    Download  
     
    Export citation  
     
    Bookmark  
  • Updating the “abstract–concrete” distinction in Ancient Near Eastern numbers.Karenleigh Overmann - 2018 - Cuneiform Digital Library Journal 1:1–22.
    The characterization of early token-based accounting using a concrete concept of number, later numerical notations an abstract one, has become well entrenched in the literature. After reviewing its history and assumptions, this article challenges the abstract–concrete distinction, presenting an alternative view of change in Ancient Near Eastern number concepts, wherein numbers are abstract from their inception and materially bound when most elaborated. The alternative draws on the chronological sequence of material counting technologies used in the Ancient Near East—fingers, tallies, tokens, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Equivalence: an attempt at a history of the idea.Amir Asghari - 2019 - Synthese 196 (11):4657-4677.
    This paper proposes a reading of the history of equivalence in mathematics. The paper has two main parts. The first part focuses on a relatively short historical period when the notion of equivalence is about to be decontextualized, but yet, has no commonly agreed-upon name. The method for this part is rather straightforward: following the clues left by the others for the ‘first’ modern use of equivalence. The second part focuses on a relatively long historical period when equivalence is experienced (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Fitting Feelings and Elegant Proofs: On the Psychology of Aesthetic Evaluation in Mathematics.Cain Todd - 2017 - Philosophia Mathematica:nkx007.
    ABSTRACT This paper explores the role of aesthetic judgements in mathematics by focussing on the relationship between the epistemic and aesthetic criteria employed in such judgements, and on the nature of the psychological experiences underpinning them. I claim that aesthetic judgements in mathematics are plausibly understood as expressions of what I will call ‘aesthetic-epistemic feelings’ that serve a genuine cognitive and epistemic function. I will then propose a naturalistic account of these feelings in terms of sub-personal processes of representing and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Beauty Is Not Simplicity: An Analysis of Mathematicians' Proof Appraisals.Matthew Inglis & Andrew Aberdein - 2015 - Philosophia Mathematica 23 (1):87-109.
    What do mathematicians mean when they use terms such as ‘deep’, ‘elegant’, and ‘beautiful’? By applying empirical methods developed by social psychologists, we demonstrate that mathematicians' appraisals of proofs vary on four dimensions: aesthetics, intricacy, utility, and precision. We pay particular attention to mathematical beauty and show that, contrary to the classical view, beauty and simplicity are almost entirely unrelated in mathematics.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Is Mathematics Problem Solving or Theorem Proving?Carlo Cellucci - 2017 - Foundations of Science 22 (1):183-199.
    The question that is the subject of this article is not intended to be a sociological or statistical question about the practice of today’s mathematicians, but a philosophical question about the nature of mathematics, and specifically the method of mathematics. Since antiquity, saying that mathematics is problem solving has been an expression of the view that the method of mathematics is the analytic method, while saying that mathematics is theorem proving has been an expression of the view that the method (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Rigour, Proof and Soundness.Oliver M. W. Tatton-Brown - 2020 - Dissertation, University of Bristol
    The initial motivating question for this thesis is what the standard of rigour in modern mathematics amounts to: what makes a proof rigorous, or fail to be rigorous? How is this judged? A new account of rigour is put forward, aiming to go some way to answering these questions. Some benefits of the norm of rigour on this account are discussed. The account is contrasted with other remarks that have been made about mathematical proof and its workings, and is tested (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Unmasking the truth beneath the beauty: Why the supposed aesthetic judgements made in science may not be aesthetic at all.Cain S. Todd - 2008 - International Studies in the Philosophy of Science 22 (1):61 – 79.
    In this article I examine the status of putative aesthetic judgements in science and mathematics. I argue that if the judgements at issue are taken to be genuinely aesthetic they can be divided into two types, positing either a disjunction or connection between aesthetic and epistemic criteria in theory/proof assessment. I show that both types of claim face serious difficulties in explaining the purported role of aesthetic judgements in these areas. I claim that the best current explanation of this role, (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Mathematical Narratives.James Robert Brown - 2014 - European Journal of Analytic Philosophy 10 (2):59-73.
    Philosophers and mathematicians have different ideas about the difference between pure and applied mathematics. This should not surprise us, since they have different aims and interests. For mathematicians, pure mathematics is the interesting stuff, even if it has lots of physics involved. This has the consequence that picturesque examples play a role in motivating and justifying mathematical results. Philosophers might find this upsetting, but we find a parallel to mathematician’s attitudes in ethics, which, I argue, is a much better model (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Fitting Feelings and Elegant Proofs: On the Psychology of Aesthetic Evaluation in Mathematics.Cain Todd - 2018 - Philosophia Mathematica 26 (2):211-233.
    This paper explores the role of aesthetic judgements in mathematics by focussing on the relationship between the epistemic and aesthetic criteria employed in such judgements, and on the nature of the psychological experiences underpinning them. I claim that aesthetic judgements in mathematics are plausibly understood as expressions of what I will call ‘aesthetic-epistemic feelings’ that serve a genuine cognitive and epistemic function. I will then propose a naturalistic account of these feelings in terms of sub-personal processes of representing and assessing (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Intuition in Mathematics: a Perceptive Experience.Alexandra Van-Quynh - 2017 - Journal of Phenomenological Psychology 48 (1):1-38.
    This study applied a method of assisted introspection to investigate the phenomenology of mathematical intuition arousal. The aim was to propose an essential structure for the intuitive experience of mathematics. To achieve an intersubjective comparison of different experiences, several contemporary mathematicians were interviewed in accordance with the elicitation interview method in order to collect pinpoint experiential descriptions. Data collection and analysis was then performed using steps similar to those outlined in the descriptive phenomenological method that led to a generic structure (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Definition in mathematics.Carlo Cellucci - 2018 - European Journal for Philosophy of Science 8 (3):605-629.
    In the past century the received view of definition in mathematics has been the stipulative conception, according to which a definition merely stipulates the meaning of a term in other terms which are supposed to be already well known. The stipulative conception has been so absolutely dominant and accepted as unproblematic that the nature of definition has not been much discussed, yet it is inadequate. This paper examines its shortcomings and proposes an alternative, the heuristic conception.
    Download  
     
    Export citation  
     
    Bookmark   4 citations