Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Towards a characterization of metaphysics of biology: metaphysics for and metaphysics in biology.Vanesa Triviño - 2022 - Synthese 200 (5):1-21.
    Since the last decades of the twentieth and the beginning of the twenty-first century, the use of metaphysics by philosophers when approaching conceptual problems in biology has increased. Some philosophers call this tendency in philosophy of biology ‘Metaphysics of Biology’. In this paper, I aim at characterizing Metaphysics of Biology by paying attention to the diverse ways philosophers use metaphysics when addressing conceptual problems in biology. I will claim that there are two different modes of doing Metaphysics of Biology, namely (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Indeterminism in the brain.Bryce Gessell - 2017 - Biology and Philosophy 32 (6):1205-1223.
    Does the brain behave indeterministically? I argue that accounting for ion channels, key functional units in the brain, requires indeterministic models. These models are probabilistic, so the brain does behave indeterministically in a weak sense. I explore the implications of this point for a stronger sense of indeterminism. Ultimately I argue that it is not possible, either empirically or through philosophical argument, to show that the brain is indeterministic in that stronger sense.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Drift: A historical and conceptual overview.Anya Plutynski - 2007 - Biological Theory 2 (2):156-167.
    There are several different ways in which chance affects evolutionary change. That all of these processes are called “random genetic drift” is in part a due to common elements across these different processes, but is also a product of historical borrowing of models and language across different levels of organization in the biological hierarchy. A history of the concept of drift will reveal the variety of contexts in which drift has played an explanatory role in biology, and will shed light (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • How not to argue for the indeterminism of evolution: A look at two recent attempts to settle the issue.Roberta Millstein - 2003 - In Andreas Hüttemann (ed.), Determinism in Physics and Biology (edited book). Paderborn, Deutschland: Mentis.
    I examine recent debates in the philosophy of biology over the determinism or indeterminism of the evolutionary process, focusing on two papers in particular: Glymour 2001 and Stamos 2001. I argue that neither of these papers succeeds in making the case for the indeterminism of the evolutionary process, and suggest that what is needed is a detailed analysis of the causal processes at every level from the quantum mechanical to the evolutionary.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • How Do Natural Selection and Random Drift Interact?Marshall Abrams - 2007 - Philosophy of Science 74 (5):666-679.
    One controversy about the existence of so called evolutionary forces such as natural selection and random genetic drift concerns the sense in which such “forces” can be said to interact. In this paper I explain how natural selection and random drift can interact. In particular, I show how population-level probabilities can be derived from individual-level probabilities, and explain the sense in which natural selection and drift are embodied in these population-level probabilities. I argue that whatever causal character the individual-level probabilities (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Quantum java: The upwards percolation of quantum indeterminacy.Bruce Glymour, Marcelo Sabatés & Andrew Wayne - 2001 - Philosophical Studies 103 (3):271 - 283.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Discussion of "four case studies on chance in evolution": Philosophical themes and questions.Roberta L. Millstein - 2006 - Philosophy of Science 73 (5):678-687.
    The four case studies on chance in evolution provide a rich source for further philosophical analysis. Among the issues raised are the following: Are there different conceptions of chance at work, or is there a common underlying conception? How can a given concept of chance be distinguished from other chance concepts and from nonchance concepts? How can the occurrence of a given chance process be distinguished empirically from nonchance processes or other chance processes? What role does chance play in evolutionary (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Fitness and Propensity’s Annulment?Marshall Abrams - 2007 - Biology and Philosophy 22 (1):115-130.
    Recent debate on the nature of probabilities in evolutionary biology has focused largely on the propensity interpretation of fitness (PIF), which defines fitness in terms of a conception of probability known as “propensity”. However, proponents of this conception of fitness have misconceived the role of probability in the constitution of fitness. First, discussions of probability and fitness have almost always focused on organism effect probability, the probability that an organism and its environment cause effects. I argue that much of the (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Naturalized metaphysics or displacing metaphysicians to save metaphysics.Rasmus Jaksland - 2023 - Synthese 201 (6):1-25.
    Naturalized metaphysics aims to establish justified metaphysical claims, where metaphysics is meant to carry its usual significance, while avoiding the traditional methods of metaphysics—a priori reasoning, conceptual analysis, intuitions, and common sense—which naturalized metaphysics argues are not epistemically probative. After offering an explication of what it means to do metaphysics, this paper argues that naturalized metaphysics, at the outset, is hospitable to doing metaphysics. The underdetermination of metaphysics by science, however, changes the picture. Naturalized metaphysics has to break this underdetermination, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Locating uncertainty in stochastic evolutionary models: divergence time estimation.Charles H. Pence - 2019 - Biology and Philosophy 34 (2):21.
    Philosophers of biology have worked extensively on how we ought best to interpret the probabilities which arise throughout evolutionary theory. In spite of this substantial work, however, much of the debate has remained persistently intractable. I offer the example of Bayesian models of divergence time estimation as a case study in how we might bring further resources from the biological literature to bear on these debates. These models offer us an example in which a number of different sources of uncertainty (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A causal dispositional account of fitness.Laura Nuño de la Rosa & Vanessa Triviño - 2016 - History and Philosophy of the Life Sciences 38 (3):1-18.
    The notion of fitness is usually equated to reproductive success. However, this actualist approach presents some difficulties, mainly the explanatory circularity problem, which have lead philosophers of biology to offer alternative definitions in which fitness and reproductive success are distinguished. In this paper, we argue that none of these alternatives is satisfactory and, inspired by Mumford and Anjum’s dispositional theory of causation, we offer a definition of fitness as a causal dispositional property. We argue that, under this framework, the distinctiveness (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Interpretations of probability in evolutionary theory.Roberta L. Millstein - 2003 - Philosophy of Science 70 (5):1317-1328.
    Evolutionary theory (ET) is teeming with probabilities. Probabilities exist at all levels: the level of mutation, the level of microevolution, and the level of macroevolution. This uncontroversial claim raises a number of contentious issues. For example, is the evolutionary process (as opposed to the theory) indeterministic, or is it deterministic? Philosophers of biology have taken different sides on this issue. Millstein (1997) has argued that we are not currently able answer this question, and that even scientific realists ought to remain (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • (1 other version)Evolution.Roberta L. Millstein - 2017 - Stanford Encylopedia of Philosophy.
    Evolution in its contemporary meaning in biology typically refers to the changes in the proportions of biological types in a population over time (see the entry on the concept of evolution to 1872 for earlier meanings). As evolution is too large of a topic to address thoroughly in one entry, the primary goal of this entry is to serve as a broad overview of contemporary issues in evolution with links to other entries where more in-depth discussion can be found. The (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Laplaceanism defended.Peter Gildenhuys - 2016 - Biology and Philosophy 31 (3):395-408.
    This work is a critical consideration of several arguments recently given by Elliott Sober that are aimed at undermining the Laplacean stance on probability in evolutionary theory. The Laplacean contends that the only objective probability an event has is the one assigned to it by a complete description of the relevant microparticles. Sober alleges a formal demonstration that the Laplacean stance on probability in evolutionary theory is inconsistent. But Sober’s argument contains a crucial lacuna, one that likely cannot be repaired (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Are random drift and natural selection conceptually distinct?Roberta L. Millstein - 2002 - Biology and Philosophy 17 (1):33-53.
    The latter half of the twentieth century has been marked by debates in evolutionary biology over the relative significance of natural selection and random drift: the so-called “neutralist/selectionist” debates. Yet John Beatty has argued that it is difficult, if not impossible, to distinguish the concept of random drift from the concept of natural selection, a claim that has been accepted by many philosophers of biology. If this claim is correct, then the neutralist/selectionist debates seem at best futile, and at worst, (...)
    Download  
     
    Export citation  
     
    Bookmark   105 citations  
  • The Emergence of the Macroworld: A Study of Intertheory Relations in Classical and Quantum Mechanics.Malcolm R. Forster & Alexey Kryukov - 2003 - Philosophy of Science 70 (5):1039-1051.
    Classical mechanics is empirically successful because the probabilistic mean values of quantum mechanical observables follow the classical equations of motion to a good approximation (Messiah 1970, 215). We examine this claim for the one-dimensional motion of a particle in a box, and extend the idea by deriving a special case of the ideal gas law in terms of the mean value of a generalized force used to define "pressure." The examples illustrate the importance of probabilistic averaging as a method of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Conflation of "Chance" in Evolution.Charles H. Pence - manuscript
    Discussions of “chance” and related concepts are found throughout philosophical work on evolutionary theory. By drawing attention to three very commonly-recognized distinctions, I separate four independent concepts falling under the broad heading of “chance”: randomness, epistemic unpredictability, causal indeterminism, and probabilistic causal processes. Far from a merely semantic distinction, however, it is demonstrated that conflation of these obviously distinct notions has an important bearing on debates at the core of evolutionary theory, particularly the debate over the interpretation of fitness, natural (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Determinism, realism, and probability in evolutionary theory.Marcel Weber - 2001 - Proceedings of the Philosophy of Science Association 2001 (3):S213-.
    Recent discussion of the statistical character of evolutionary theory has centered around two positions: (1) Determinism combined with the claim that the statistical character is eliminable, a subjective interpretation of probability, and instrumentalism; (2) Indeterminism combined with the claim that the statistical character is ineliminable, a propensity interpretation of probability, and realism. I point out some internal problems in these positions and show that the relationship between determinism, eliminability, realism, and the interpretation of probability is more complex than previously assumed (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Handbook of Evolutionary Thinking in the Sciences.Thomas Heams, Philippe Huneman, Guillaume Lecointre & Marc Silberstein (eds.) - 2014 - Springer.
    The Darwinian theory of evolution is itself evolving and this book presents the details of the core of modern Darwinism and its latest developmental directions. The authors present current scientific work addressing theoretical problems and challenges in four sections, beginning with the concepts of evolution theory, its processes of variation, heredity, selection, adaptation and function, and its patterns of character, species, descent and life. The second part of this book scrutinizes Darwinism in the philosophy of science and its usefulness in (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Deterministic Probability: Neither chance nor credence.Aidan Lyon - 2011 - Synthese 182 (3):413-432.
    Some have argued that chance and determinism are compatible in order to account for the objectivity of probabilities in theories that are compatible with determinism, like Classical Statistical Mechanics (CSM) and Evolutionary Theory (ET). Contrarily, some have argued that chance and determinism are incompatible, and so such probabilities are subjective. In this paper, I argue that both of these positions are unsatisfactory. I argue that the probabilities of theories like CSM and ET are not chances, but also that they are (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Fitness “kinematics”: biological function, altruism, and organism–environment development.Marshall Abrams - 2009 - Biology and Philosophy 24 (4):487-504.
    It’s recently been argued that biological fitness can’t change over the course of an organism’s life as a result of organisms’ behaviors. However, some characterizations of biological function and biological altruism tacitly or explicitly assume that an effect of a trait can change an organism’s fitness. In the first part of the paper, I explain that the core idea of changing fitness can be understood in terms of conditional probabilities defined over sequences of events in an organism’s life. The result (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Chance and the patterns of drift: A natural experiment.Robert C. Richardson - 2006 - Philosophy of Science 73 (5):642-654.
    Evolutionary models can explain the dynamics of populations, how genetic, genotypic, or phenotypic frequencies change with time. Models incorporating chance, or drift, predict specific patterns of change. These are illustrated using classic work on blood types by Cavalli-Sforza and his collaborators in the Parma Valley of Italy, in which the theoretically predicted patterns are exhibited in human populations. These data and the models display properties of ensembles of populations. The explanatory problem needs to be understood in terms of how likely (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Why Evolution is Really Indeterministic.R. Sansom - 2003 - Synthese 136 (2):263-279.
    Leslie Graves, Barbara Horan and Alex Rosenberg (1999) have argued that the process of evolution is really deterministic, so we should be instrumentalists about our probabilistic evolutionary theory. I criticize the consistency of their view. I argue that because they are realists towards multiple theories (quantum mechanics and macrophysics) their arguments against realism for another scientific theory fail. The main point of this paper is critical, but in order to set up this criticism I explore the ramifications of realism for (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • How was teleology eliminated in early molecular biology?Phillip R. Sloan - 2012 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 43 (1):140-151.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantum indeterminism and evolutionary biology.David N. Stamos - 2001 - Philosophy of Science 68 (2):164-184.
    In "The Indeterministic Character of Evolutionary Theory: No 'Hidden Variables Proof' But No Room for Determinism Either," Brandon and Carson (1996) argue that evolutionary theory is statistical because the processes it describes are fundamentally statistical. In "Is Indeterminism the Source of the Statistical Character of Evolutionary Theory?" Graves, Horan, and Rosenberg (1999) argue in reply that the processes of evolutionary biology are fundamentally deterministic and that the statistical character of evolutionary theory is explained by epistemological rather than ontological considerations. In (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • In What Sense Can There Be Evolution by Natural Selection Without Perfect Inheritance?Pierrick Bourrat - 2019 - International Studies in the Philosophy of Science 32 (1):13-31.
    ABSTRACTIn Darwinian Population and Natural Selection, Peter Godfrey-Smith brought the topic of natural selection back to the forefront of philosophy of biology, highlighting different issues surro...
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Infinite populations and counterfactual frequencies in evolutionary theory.Marshall Abrams - 2006 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 37 (2):256-268.
    One finds intertwined with ideas at the core of evolutionary theory claims about frequencies in counterfactual and infinitely large populations of organisms, as well as in sets of populations of organisms. One also finds claims about frequencies in counterfactual and infinitely large populations—of events—at the core of an answer to a question concerning the foundations of evolutionary theory. The question is this: To what do the numerical probabilities found throughout evolutionary theory correspond? The answer in question says that evolutionary probabilities (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Selection, indeterminism, and evolutionary theory.Bruce Glymour - 2001 - Philosophy of Science 68 (4):518-535.
    I argue that results from foraging theory give us good reason to think some evolutionary phenomena are indeterministic and hence that evolutionary theory must be probabilistic. Foraging theory implies that random search is sometimes selectively advantageous, and experimental work suggests that it is employed by a variety of organisms. There are reasons to think such search will sometimes be genuinely indeterministic. If it is, then individual reproductive success will also be indeterministic, and so too will frequency change in populations of (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Is the evolutionary process deterministic or indeterministic? An argument for agnosticism.Roberta L. Millstein - 2000
    Recently, philosophers of biology have debated the status of the evolutionary process: is it deterministic or indeterministic? I argue that there is insufficient reason to favor one side of the debate over the other, and that a more philosophically defensible position argues neither for the determinacy nor for the indeterminacy of the evolutionary process. In other words, I maintain that the appropriate stand to take towards the question of the determinism of the evolutionary process is agnosticism. I then suggest that (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Discussion note: Indeterminism, probability, and randomness in evolutionary theory.Alex Rosenberg - 2001 - Philosophy of Science 68 (4):536-544.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • On Probabilities in Biology and Physics.Joseph Berkovitz & Philippe Huneman - 2015 - Erkenntnis 80 (S3):433-456.
    This volume focuses on various questions concerning the interpretation of probability and probabilistic reasoning in biology and physics. It is inspired by the idea that philosophers of biology and philosophers of physics who work on the foundations of their disciplines encounter similar questions and problems concerning the role and application of probability, and that interaction between the two communities will be both interesting and fruitful. In this introduction we present the background to the main questions that the volume focuses on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Direction and Description.Yemima Ben-Menahem - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (4):621-635.
    This paper deals with the dependence of directionality in the course of events-or our claims concerning such directionality-on the modes of description we use in speaking of the events in question. I argue that criteria of similarity and individuation play a crucial role in assessments of directionality. This is an extension of Davidson's claim regarding the difference between causal and explanatory contexts. The argument is based on a characterisation of notions of necessity and contingency that differ from their modal logic (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Determinism, Realism, and Probability in Evolutionary Theory.Marcel Weber - 2001 - Philosophy of Science 68 (S3):S213-S224.
    Recent discussion of the statistical character of evolutionary theory has centered around two positions: Determinism combined with the claim that the statistical character is eliminable, a subjective interpretation of probability, and instrumentalism; Indeterminism combined with the claim that the statistical character is ineliminable, a propensity interpretation of probability, and realism. I point out some internal problems in these positions and show that the relationship between determinism, eliminability, realism, and the interpretation of probability is more complex than previously assumed in this (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Information Theory and Natural Selection.Ryota Morimoto - 2008 - Annals of the Japan Association for Philosophy of Science 16 (1-2):57-73.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Interpretation of Probability in Evolutionary Theory.Ryota Morimoto - 2009 - Kagaku Tetsugaku 42 (1):83-96.
    Download  
     
    Export citation  
     
    Bookmark