Switch to: References

Add citations

You must login to add citations.
  1. A strategy to what end? “The strategy of model building in population biology” in its programmatic context.Zvi Hasnes-Beninson - 2024 - History and Philosophy of the Life Sciences 46 (4):1-33.
    “The Strategy of Model Building in Population Biology” published by Richard Levins in 1966 has been cited over 2500 times. For a paper concerned with modeling approaches in population biology a surprisingly large part of the attention. The Strategy received comes from history and philosophy of biology, and specifically from accounts on model and model formulation. The Strategy is an unusual paper; it presents neither new data nor a new formal model; at times it reads like a manifesto for some (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Taming fitness: Organism‐environment interdependencies preclude long‐term fitness forecasting.Guilhem Doulcier, Peter Takacs & Pierrick Bourrat - 2021 - Bioessays 43 (1):2000157.
    Fitness is a central but notoriously vexing concept in evolutionary biology. The propensity interpretation of fitness is often regarded as the least problematic account for fitness. It ties an individual's fitness to a probabilistic capacity to produce offspring. Fitness has a clear causal role in evolutionary dynamics under this account. Nevertheless, the propensity interpretation faces its share of problems. We discuss three of these. We first show that a single scalar value is an incomplete summary of a propensity. Second, we (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Fitness and the Twins.Elliott Sober - 2020 - Philosophy, Theory, and Practice in Biology 12 (1):1-13.
    Michael Scriven’s (1959) example of identical twins (who are said to be equal in fitness but unequal in their reproductive success) has been used by many philosophers of biology to discuss how fitness should be defined, how selection should be distinguished from drift, and how the environment in which a selection process occurs should be conceptualized. Here it is argued that evolutionary theory has no commitment, one way or the other, as to whether the twins are equally fit. This is (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Handbook of Evolutionary Thinking in the Sciences.Thomas Heams, Philippe Huneman, Guillaume Lecointre & Marc Silberstein (eds.) - 2014 - Springer.
    The Darwinian theory of evolution is itself evolving and this book presents the details of the core of modern Darwinism and its latest developmental directions. The authors present current scientific work addressing theoretical problems and challenges in four sections, beginning with the concepts of evolution theory, its processes of variation, heredity, selection, adaptation and function, and its patterns of character, species, descent and life. The second part of this book scrutinizes Darwinism in the philosophy of science and its usefulness in (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Selection never dominates drift.Hayley Clatterbuck, Elliott Sober & Richard Lewontin - 2013 - Biology and Philosophy 28 (4):577-592.
    The probability that the fitter of two alleles will increase in frequency in a population goes up as the product of N (the effective population size) and s (the selection coefficient) increases. Discovering the distribution of values for this product across different alleles in different populations is a very important biological task. However, biologists often use the product Ns to define a different concept; they say that drift “dominates” selection or that drift is “stronger than” selection when Ns is much (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Evolutionary causes as mechanisms: a critical analysis.Saúl Pérez-González & Victor J. Luque - 2019 - History and Philosophy of the Life Sciences 41 (2):13.
    In this paper, we address the question whether a mechanistic approach can account for evolutionary causes. The last decade has seen a major attempt to account for natural selection as a mechanism. Nevertheless, we stress the relevance of broadening the debate by including the other evolutionary causes inside the mechanistic approach, in order to be a legitimate conceptual framework on the same footing as other approaches to evolutionary theory. We analyse the current debate on natural selection as a mechanism, and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Four Pillars of Statisticalism.Denis M. Walsh, André Ariew & Mohan Matthen - 2017 - Philosophy, Theory, and Practice in Biology 9 (1):1-18.
    Over the past fifteen years there has been a considerable amount of debate concerning what theoretical population dynamic models tell us about the nature of natural selection and drift. On the causal interpretation, these models describe the causes of population change. On the statistical interpretation, the models of population dynamics models specify statistical parameters that explain, predict, and quantify changes in population structure, without identifying the causes of those changes. Selection and drift are part of a statistical description of population (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Drift and evolutionary forces: scrutinizing the Newtonian analogy.Víctor J. Luque - 2016 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 31 (3):397-410.
    This article analyzes the view of evolutionary theory as a theory of forces. The analogy with Newtonian mechanics has been challenged due to the alleged mismatch between drift and the other evolutionary forces. Since genetic drift has no direction several authors tried to protect its status as a force: denying its lack of directionality, extending the notion of force and looking for a force in physics which also lacks of direction. I analyse these approaches, and although this strategy finally succeeds, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Causal Foundations of Evolutionary Genetics.Jun Otsuka - 2016 - British Journal for the Philosophy of Science 67 (1):247-269.
    The causal nature of evolution is one of the central topics in the philosophy of biology. The issue concerns whether equations used in evolutionary genetics point to some causal processes or purely phenomenological patterns. To address this question the present article builds well-defined causal models that underlie standard equations in evolutionary genetics. These models are based on minimal and biologically plausible hypotheses about selection and reproduction, and generate statistics to predict evolutionary changes. The causal reconstruction of the evolutionary principles shows (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Explanatory unification and natural selection explanations.Stefan Petkov, Wei Wang & Yi Lei - 2016 - Biology and Philosophy 31 (5):705-725.
    The debate between the dynamical and the statistical interpretations of natural selection is centred on the question of whether all explanations that employ the concepts of natural selection and drift are reducible to causal explanations. The proponents of the statistical interpretation answer negatively, but insist on the fact that selection/drift arguments are explanatory. However, they remain unclear on where the explanatory power comes from. The proponents of the dynamical interpretation answer positively and try to reduce selection/drift arguments to some of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Causal Foundations of Evolutionary Genetics.Jun Otsuka - 2014 - British Journal for the Philosophy of Science (1):axu039.
    The causal nature of evolution is one of the central topics in the philosophy of biology. The issue concerns whether equations used in evolutionary genetics point to some causal processes or purely phenomenological patterns. To address this question the present article builds well-defined causal models that underlie standard equations in evolutionary genetics. These models are based on minimal and biologically plausible hypotheses about selection and reproduction, and generate statistics to predict evolutionary changes. The causal reconstruction of the evolutionary principles shows (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • (1 other version)Really Statistical Explanations and Genetic Drift.Marc Lange - 2013 - Philosophy of Science 80 (2):169-188.
    Really statistical explanation is a hitherto neglected form of noncausal scientific explanation. Explanations in population biology that appeal to drift are RS explanations. An RS explanation supplies a kind of understanding that a causal explanation of the same result cannot supply. Roughly speaking, an RS explanation shows the result to be mere statistical fallout.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Arbitrariness and Causation in Classical Population Genetics.Peter Gildenhuys - 2014 - British Journal for the Philosophy of Science 65 (3):429-444.
    I criticize some arguments against the causal interpretability of population genetics put forward by Denis Walsh ([2007], [2010]). In particular, I seek to undermine the contention that population genetics exhibits frame of reference relativity or subjectivity with respect to its formal representations. I also show that classical population genetics does not fall foul of some criteria for causal representation put forward by James Woodward ([2003]), although those criteria do undermine some causalist stances. 1 Introduction2 Modularity3 The Crucially Important Point4 The (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Probability in Biology: The Case of Fitness.Roberta L. Millstein - 2016 - In Alan Hájek & Christopher Hitchcock (eds.), The Oxford Handbook of Probability and Philosophy. Oxford: Oxford University Press. pp. 601-622.
    I argue that the propensity interpretation of fitness, properly understood, not only solves the explanatory circularity problem and the mismatch problem, but can also withstand the Pandora’s box full of problems that have been thrown at it. Fitness is the propensity (i.e., probabilistic ability, based on heritable physical traits) for organisms or types of organisms to survive and reproduce in particular environments and in particular populations for a specified number of generations; if greater than one generation, “reproduction” includes descendants of (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • A New Foundation for the Propensity Interpretation of Fitness.Charles H. Pence & Grant Ramsey - 2013 - British Journal for the Philosophy of Science 64 (4):851-881.
    The propensity interpretation of fitness (PIF) is commonly taken to be subject to a set of simple counterexamples. We argue that three of the most important of these are not counterexamples to the PIF itself, but only to the traditional mathematical model of this propensity: fitness as expected number of offspring. They fail to demonstrate that a new mathematical model of the PIF could not succeed where this older model fails. We then propose a new formalization of the PIF that (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Puzzles for ZFEL, McShea and Brandon’s zero force evolutionary law.Martin Barrett, Hayley Clatterbuck, Michael Goldsby, Casey Helgeson, Brian McLoone, Trevor Pearce, Elliott Sober, Reuben Stern & Naftali Weinberger - 2012 - Biology and Philosophy 27 (5):723-735.
    In their 2010 book, Biology’s First Law, D. McShea and R. Brandon present a principle that they call ‘‘ZFEL,’’ the zero force evolutionary law. ZFEL says (roughly) that when there are no evolutionary forces acting on a population, the population’s complexity (i.e., how diverse its member organisms are) will increase. Here we develop criticisms of ZFEL and describe a different law of evolution; it says that diversity and complexity do not change when there are no evolutionary causes.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Regulatory evolution and theoretical arguments in evolutionary biology.Stavros Ioannidis - 2013 - Science & Education 22 (2):279-292.
    The cis-regulatory hypothesis is one of the most important claims of evolutionary developmental biology. In this paper I examine the theoretical argument for cis-regulatory evolution and its role within evolutionary theorizing. I show that, although the argument has some weaknesses, it acts as a useful example for the importance of current scientific debates for science education.
    Download  
     
    Export citation  
     
    Bookmark  
  • From Developmental Constraint to Evolvability: How Concepts Figure in Explanation and Disciplinary Identity.Ingo Brigandt - 2014 - In Alan C. Love (ed.), Conceptual Change in Biology: Scientific and Philosophical Perspectives on Evolution and Development. Berlin: Springer Verlag, Boston Studies in the Philosophy of Science. pp. 305-325.
    The concept of developmental constraint was at the heart of developmental approaches to evolution of the 1980s. While this idea was widely used to criticize neo-Darwinian evolutionary theory, critique does not yield an alternative framework that offers evolutionary explanations. In current Evo-devo the concept of constraint is of minor importance, whereas notions as evolvability are at the center of attention. The latter clearly defines an explanatory agenda for evolutionary research, so that one could view the historical shift from ‘developmental constraint’ (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Drift: A historical and conceptual overview.Anya Plutynski - 2007 - Biological Theory 2 (2):156-167.
    There are several different ways in which chance affects evolutionary change. That all of these processes are called “random genetic drift” is in part a due to common elements across these different processes, but is also a product of historical borrowing of models and language across different levels of organization in the biological hierarchy. A history of the concept of drift will reveal the variety of contexts in which drift has played an explanatory role in biology, and will shed light (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (Mis)interpreting Mathematical Models: Drift as a Physical Process.Michael R. Dietrich, Robert A. Skipper Jr & Roberta L. Millstein - 2009 - Philosophy, Theory, and Practice in Biology 1 (20130604):e002.
    Recently, a number of philosophers of biology have endorsed views about random drift that, we will argue, rest on an implicit assumption that the meaning of concepts such as drift can be understood through an examination of the mathematical models in which drift appears. They also seem to implicitly assume that ontological questions about the causality of terms appearing in the models can be gleaned from the models alone. We will question these general assumptions by showing how the same equation (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Walsh on causes and evolution.Robert Northcott - 2010 - Philosophy of Science 77 (3):457-467.
    Denis Walsh has written a striking new defense in this journal of the statisticalist (i.e., noncausalist) position regarding the forces of evolution. I defend the causalist view against his new objections. I argue that the heart of the issue lies in the nature of nonadditive causation. Detailed consideration of that turns out to defuse Walsh’s ‘description‐dependence’ critique of causalism. Nevertheless, the critique does suggest a basis for reconciliation between the two competing views. *Received December 2009; revised December 2009. †To contact (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • An explication of the causal dimension of drift.Peter Gildenhuys - 2009 - British Journal for the Philosophy of Science 60 (3):521-555.
    Among philosophers, controversy over the notion of drift in population genetics is ongoing. This is at least partly because the notion of drift has an ambiguous usage among population geneticists. My goal in this paper is to explicate the causal dimension of drift, to say what causal influences are responsible for the stochasticity in population genetics models. It is commonplace for population genetics to oppose the influence of selection to that of drift, and to consider how the dynamics of populations (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Drift and “Statistically Abstractive Explanation”.Mohan Matthen - 2009 - Philosophy of Science 76 (4):464-487.
    A hitherto neglected form of explanation is explored, especially its role in population genetics. “Statistically abstractive explanation” (SA explanation) mandates the suppression of factors probabilistically relevant to an explanandum when these factors are extraneous to the theoretical project being pursued. When these factors are suppressed, the explanandum is rendered uncertain. But this uncertainty traces to the theoretically constrained character of SA explanation, not to any real indeterminacy. Random genetic drift is an artifact of such uncertainty, and it is therefore wrong (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • The role of causal processes in the neutral and nearly neutral theories.Michael R. Dietrich & Roberta L. Millstein - 2008 - Philosophy of Science 75 (5):548-559.
    The neutral and nearly neutral theories of molecular evolution are sometimes characterized as theories about drift alone, where drift is described solely as an outcome, rather than a process. We argue, however, that both selection and drift, as causal processes, are integral parts of both theories. However, the nearly neutral theory explicitly recognizes alleles and/or molecular substitutions that, while engaging in weakly selected causal processes, exhibit outcomes thought to be characteristic of random drift. A narrow focus on outcomes obscures the (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Distinguishing Drift and Selection Empirically: "The Great Snail Debate" of the 1950s.Roberta L. Millstein - 2007 - Journal of the History of Biology 41 (2):339-367.
    Biologists and philosophers have been extremely pessimistic about the possibility of demonstrating random drift in nature, particularly when it comes to distinguishing random drift from natural selection. However, examination of a historical case-Maxime Lamotte's study of natural populations of the land snail, Cepaea nemoralis in the 1950s - shows that while some pessimism is warranted, it has been overstated. Indeed, by describing a unique signature for drift and showing that this signature obtained in the populations under study, Lamotte was able (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Selection, drift, and the “forces” of evolution.Christopher Stephens - 2004 - Philosophy of Science 71 (4):550-570.
    Recently, several philosophers have challenged the view that evolutionary theory is usefully understood by way of an analogy with Newtonian mechanics. Instead, they argue that evolutionary theory is merely a statistical theory. According to this alternate approach, natural selection and random genetic drift are not even causes, much less forces. I argue that, properly understood, the Newtonian analogy is unproblematic and illuminating. I defend the view that selection and drift are causes in part by attending to a pair of important (...)
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • Genetic variance–covariance matrices: A critique of the evolutionary quantitative genetics research program.Massimo Pigliucci - 2006 - Biology and Philosophy 21 (1):1-23.
    This paper outlines a critique of the use of the genetic variance–covariance matrix (G), one of the central concepts in the modern study of natural selection and evolution. Specifically, I argue that for both conceptual and empirical reasons, studies of G cannot be used to elucidate so-called constraints on natural selection, nor can they be employed to detect or to measure past selection in natural populations – contrary to what assumed by most practicing biologists. I suggest that the search for (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Interpretations of probability in evolutionary theory.Roberta L. Millstein - 2003 - Philosophy of Science 70 (5):1317-1328.
    Evolutionary theory (ET) is teeming with probabilities. Probabilities exist at all levels: the level of mutation, the level of microevolution, and the level of macroevolution. This uncontroversial claim raises a number of contentious issues. For example, is the evolutionary process (as opposed to the theory) indeterministic, or is it deterministic? Philosophers of biology have taken different sides on this issue. Millstein (1997) has argued that we are not currently able answer this question, and that even scientific realists ought to remain (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Discussion of "four case studies on chance in evolution": Philosophical themes and questions.Roberta L. Millstein - 2006 - Philosophy of Science 73 (5):678-687.
    The four case studies on chance in evolution provide a rich source for further philosophical analysis. Among the issues raised are the following: Are there different conceptions of chance at work, or is there a common underlying conception? How can a given concept of chance be distinguished from other chance concepts and from nonchance concepts? How can the occurrence of a given chance process be distinguished empirically from nonchance processes or other chance processes? What role does chance play in evolutionary (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • How should we distinguish between selectable and circumstantial traits?Ciprian Jeler - 2024 - History and Philosophy of the Life Sciences 46 (1):1-22.
    There is surprisingly little philosophical work on conceptually spelling out the difference between the traits on which natural selection may be said to act (e.g. “having a high running speed”) and mere circumstantial traits (e.g. “happening to be in the path of a forest fire”). I label this issue the “selectable traits problem” and, in this paper, I propose a solution for it. I first show that, contrary to our first intuition, simply equating selectable traits with heritable ones is not (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The origins of the stochastic theory of population genetics: The Wright-Fisher model.Yoichi Ishida & Alirio Rosales - 2020 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 79 (C):101226.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Drift as constitutive: conclusions from a formal reconstruction of population genetics.Ariel Jonathan Roffé - 2019 - History and Philosophy of the Life Sciences 41 (4):55.
    This article elaborates on McShea and Brandon’s idea that drift is unlike the rest of the evolutionary factors because it is constitutive rather than imposed on the evolutionary process. I show that the way they spelled out this idea renders it inadequate and is the reason why it received some objections. I propose a different way in which their point could be understood, that rests on two general distinctions. The first is a distinction between the underlying mathematical apparatus used to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A causal dispositional account of fitness.Laura Nuño de la Rosa & Vanessa Triviño - 2016 - History and Philosophy of the Life Sciences 38 (3):1-18.
    The notion of fitness is usually equated to reproductive success. However, this actualist approach presents some difficulties, mainly the explanatory circularity problem, which have lead philosophers of biology to offer alternative definitions in which fitness and reproductive success are distinguished. In this paper, we argue that none of these alternatives is satisfactory and, inspired by Mumford and Anjum’s dispositional theory of causation, we offer a definition of fitness as a causal dispositional property. We argue that, under this framework, the distinctiveness (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Causal Structure of Evolutionary Theory.Grant Ramsey - 2016 - Australasian Journal of Philosophy 94 (3):421-434.
    One contentious debate in the philosophy of biology is that between the statisticalists and causalists. The former understand core evolutionary concepts like fitness and selection to be mere statistical summaries of underlying causal processes. In this view, evolutionary changes cannot be causally explained by selection or fitness. The causalist side, on the other hand, holds that populations can change in response to selection—one can cite fitness differences or driftability in causal explanations of evolutionary change. But, on the causalist side, it (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Drift beyond Wright–Fisher.Hayley Clatterbuck - 2015 - Synthese 192 (11):3487-3507.
    Several recent arguments by philosophers of biology have challenged the traditional view that evolutionary factors, such as drift and selection, are genuine causes of evolutionary outcomes. In the case of drift, advocates of the statistical theory argue that drift is merely the sampling error inherent in the other stochastic processes of evolution and thus denotes a mathematical, rather than causal, feature of populations. This debate has largely centered around one particular model of drift, the Wright–Fisher model, and this has contributed (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Inscrutability and the Opacity of Natural Selection and Random Genetic Drift: Distinguishing the Epistemic and Metaphysical Aspects.Philippe Huneman - 2015 - Erkenntnis 80 (3):491-518.
    ‘Statisticalists’ argue that the individual interactions of organisms taken together constitute natural selection. On this view, natural selection is an aggregated effect of interactions rather than some added cause acting on populations. The statisticalists’ view entails that natural selection and drift are indistinguishable aggregated effects of interactions, so that it becomes impossible to make a difference between them. The present paper attempts to make sense of the difference between selection and drift, given the main insights of statisticalism; basically, it will (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Drift sometimes dominates selection, and vice versa: a reply to Clatterbuck, Sober and Lewontin.Robert Brandon & Leonore Fleming - 2014 - Biology and Philosophy 29 (4):577-585.
    Clatterbuck et al. (Biol Philos 28: 577–592, 2013) argue that there is no fact of the matter whether selection dominates drift or vice versa in any particular case of evolution. Their reasons are not empirically based; rather, they are purely conceptual. We show that their conceptual presuppositions are unmotivated, unnecessary and overly complex. We also show that their conclusion runs contrary to current biological practice. The solution is to recognize that evolution involves a probabilistic sampling process, and that drift is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Feminist Philosophy of Science.Lynn Hankinson Nelson - 2002 - In Peter K. Machamer & Michael Silberstein (eds.), The Blackwell guide to the philosophy of science. Malden, Mass.: Blackwell. pp. 312–331.
    This chapter contains sections titled: Highlights of Past Literature Current Work Future Work.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Psa 2012.-Preprint Volume- - unknown
    These preprints were automatically compiled into a PDF from the collection of papers deposited in PhilSci-Archive in conjunction with the PSA 2012.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hsp90-induced evolution: Adaptationist, neutralist, and developmentalist scenarios.Roberta L. Millstein - 2007 - Biological Theory: Integrating Development, Evolution and Cognition 2 (4):376-386.
    Recent work on the heat-shock protein Hsp90 by Rutherford and Lindquist (1998) has been included among the pieces of evidence taken to show the essential role of developmental processes in evolution; Hsp90 acts as a buffer against phenotypic variation, allowing genotypic variation to build. When the buffering capacity of Hsp90 is altered (e.g., in nature, by mutation or environmental stress), the genetic variation is "revealed," manifesting itself as phenotypic variation. This phenomenon raises questions about the genetic variation before and after (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Population genetics.Roberta L. Millstein & Robert A. Skipper - 2007 - In David L. Hull & Michael Ruse (eds.), The Cambridge Companion to the Philosophy of Biology. New York: Cambridge University Press.
    Population genetics attempts to measure the influence of the causes of evolution, viz., mutation, migration, natural selection, and random genetic drift, by understanding the way those causes change the genetics of populations. But how does it accomplish this goal? After a short introduction, we begin in section (2) with a brief historical outline of the origins of population genetics. In section (3), we sketch the model theoretic structure of population genetics, providing the flavor of the ways in which population genetics (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Natural selection.Robert Brandon - 2008 - Stanford Encyclopedia of Philosophy.
    Darwin's theory of evolution by natural selection provided the first, and only, causal-mechanistic account of the existence of adaptations in nature. As such, it provided the first, and only, scientific alternative to the “argument from design”. That alone would account for its philosophical significance. But the theory also raises other philosophical questions not encountered in the study of the theories of physics. Unfortunately the concept of natural selection is intimately intertwined with the other basic concepts of evolutionary theory—such as the (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Session 4: Evolutionary indeterminism.Robert Brandon, Alan Love, Paul Griffths & Frederic Bouchard - manuscript
    Proceedings of the Pittsburgh Workshop in History and Philosophy of Biology, Center for Philosophy of Science, University of Pittsburgh, March 23-24 2001 Session 4: Evolutionary Indeterminism.
    Download  
     
    Export citation  
     
    Bookmark  
  • Natural selection as a population-level causal process.Roberta L. Millstein - 2006 - British Journal for the Philosophy of Science 57 (4):627-653.
    Recent discussions in the philosophy of biology have brought into question some fundamental assumptions regarding evolutionary processes, natural selection in particular. Some authors argue that natural selection is nothing but a population-level, statistical consequence of lower-level events (Matthen and Ariew [2002]; Walsh et al. [2002]). On this view, natural selection itself does not involve forces. Other authors reject this purely statistical, population-level account for an individual-level, causal account of natural selection (Bouchard and Rosenberg [2004]). I argue that each of these (...)
    Download  
     
    Export citation  
     
    Bookmark   127 citations  
  • The pomp of superfluous causes: The interpretation of evolutionary theory.Denis M. Walsh - 2007 - Philosophy of Science 74 (3):281-303.
    There are two competing interpretations of the modern synthesis theory of evolution: the dynamical (also know as ‘traditional’) and the statistical. The dynamical interpretation maintains that explanations offered under the auspices of the modern synthesis theory articulate the causes of evolution. It interprets selection and drift as causes of population change. The statistical interpretation holds that modern synthesis explanations merely cite the statistical structure of populations. This paper offers a defense of statisticalism. It argues that a change in trait frequencies (...)
    Download  
     
    Export citation  
     
    Bookmark   108 citations  
  • Three perspectives on neutrality and drift in molecular evolution.Michael R. Dietrich - 2006 - Philosophy of Science 73 (5):666-677.
    This article offers three contrasting cases of the use of neutrality and drift in molecular evolution. In the first, neutrality is assumed as a simplest case for modeling. In the second and third, concepts of drift and neutrality are developed within the context of population genetics testing and the development and application of the molecular clock.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Frameworks, models, and case studies: a new methodology for studying conceptual change in science and philosophy.Matteo De Benedetto - 2022 - Dissertation, Ludwig Maximilians Universität, München
    This thesis focuses on models of conceptual change in science and philosophy. In particular, I developed a new bootstrapping methodology for studying conceptual change, centered around the formalization of several popular models of conceptual change and the collective assessment of their improved formal versions via nine evaluative dimensions. Among the models of conceptual change treated in the thesis are Carnap’s explication, Lakatos’ concept-stretching, Toulmin’s conceptual populations, Waismann’s open texture, Mark Wilson’s patches and facades, Sneed’s structuralism, and Paul Thagard’s conceptual revolutions. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Sources of evolutionary contingency: chance variation and genetic drift.T. Y. William Wong - 2020 - Biology and Philosophy 35 (4):1-33.
    Contingency-theorists have gestured to a series of phenomena such as random mutations or rare Armageddon-like events as that which accounts for evolutionary contingency. These phenomena constitute a class, which may be aptly called the ‘sources of contingency’. In this paper, I offer a probabilistic conception of what it is to be a source of contingency and then examine two major candidates: chance variation and genetic drift, both of which have historically been taken to be ‘chancy’ in a number of different (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Modeling: Neutral, Null, and Baseline.William C. Bausman - 2018 - Philosophy of Science 85 (4):594-616.
    Two strategies for using a model as “null” are distinguished. Null modeling evaluates whether a process is causally responsible for a pattern by testing it against a null model. Baseline modeling measures the relative significance of various processes responsible for a pattern by detecting deviations from a baseline model. When these strategies are conflated, models are illegitimately privileged as accepted until rejected. I illustrate this using the neutral theory of ecology and draw general lessons from this case. First, scientists cannot (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Probability and Manipulation: Evolution and Simulation in Applied Population Genetics.Marshall Abrams - 2015 - Erkenntnis 80 (3):519-549.
    I define a concept of causal probability and apply it to questions about the role of probability in evolutionary processes. Causal probability is defined in terms of manipulation of patterns in empirical outcomes by manipulating properties that realize objective probabilities. The concept of causal probability allows us see how probabilities characterized by different interpretations of probability can share a similar causal character, and does so in such way as to allow new inferences about relationships between probabilities realized in different chance (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations