Switch to: References

Citations of:

Going Beyond Bell’s Theorem

In Menas Kafatos (ed.), Bell’s Theorem, Quantum Theory and Conceptions of the Universe. Kluwer Academic Publishers. pp. 69-72 (1989)

Add citations

You must login to add citations.
  1. Reconsidering No-Go Theorems from a Practical Perspective.Michael E. Cuffaro - 2018 - British Journal for the Philosophy of Science 69 (3):633-655.
    I argue that our judgements regarding the locally causal models that are compatible with a given constraint implicitly depend, in part, on the context of inquiry. It follows from this that certain quantum no-go theorems, which are particularly striking in the traditional foundational context, have no force when the context switches to a discussion of the physical systems we are capable of building with the aim of classically reproducing quantum statistics. I close with a general discussion of the possible implications (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Karl R. Popper, 1992: About the EPR controversy. [REVIEW]Marie-Christine Combourieu - 1992 - Foundations of Physics 22 (10):1303-1323.
    Sir K. R. Popper's experimental schemes challenge the Copenhagen interpretation of quantum theory, principally Heisenberg's indeterminacy relations and the EPR paradox. “The so-called Einstein-Podolsky-Rosen paradox is not a paradox. It is a theoretical statement in expectation of an interpretation,” says K. R. Popper in this interview. “My experiment ought to be a classical experiment. It is very simple and free from any additional assumption. It should really be done.”.
    Download  
     
    Export citation  
     
    Bookmark  
  • Realism and Single-Quanta Nonlocality.G. S. Paraoanu - 2011 - Foundations of Physics 41 (4):734-743.
    We show that local realism applied to states characterized by a single quantum equally and coherently shared between a number of qubits (so-called W states) produces predictions incompatible with quantum theory. The origin of this incompatibility is shown to originate from the destructive interference of amplitude probabilities associated with nonlocal states, a phenomenon that has no classical analog.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Bell's theorem and Bayes' theorem.A. J. M. Garrett - 1990 - Foundations of Physics 20 (12):1475-1512.
    Bell's theorem is expounded as an analysis in Bayesian probabilistic inference. Assume that the result of a spin measurement on a spin-1/2 particle is governed by a variable internal to the particle (local, “hidden”), and examine pairs of particles having zero combined angular momentum so that their internal variables are correlated: knowing something about the internal variable of one tells us something about that of the other. By measuring the spin of one particle, we infer something about its internal variable; (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum Mechanics: Myths and Facts. [REVIEW]Hrvoje Nikolić - 2007 - Foundations of Physics 37 (11):1563-1611.
    A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of “myths”, that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The Kochen-Specker theorem and Bell's theorem: An algebraic approach. [REVIEW]José L. Cereceda - 1995 - Foundations of Physics 25 (6):925-949.
    In this paper we present a systematic formulation of some recent results concerning the algebraic demonstration of the two major no-hidden-variables theorems for N spin-1/2 particles. We derive explicitly the GHZ states involved and their associated eigenvalues. These eigenvalues turn out to be undefined for N=∞, this fact providing a new proof showing that the nonlocality argument breaks down in the limit of a truly infinite number of particles.
    Download  
     
    Export citation  
     
    Bookmark  
  • Entanglement Sharing in Real-Vector-Space Quantum Theory.William K. Wootters - 2012 - Foundations of Physics 42 (1):19-28.
    The limitation on the sharing of entanglement is a basic feature of quantum theory. For example, if two qubits are completely entangled with each other, neither of them can be at all entangled with any other object. In this paper we show, at least for a certain standard definition of entanglement, that this feature is lost when one replaces the usual complex vector space of quantum states with a real vector space. Moreover, the difference between the two theories is extreme: (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hardy’s Non-locality Paradox and Possibilistic Conditions for Non-locality.Shane Mansfield & Tobias Fritz - 2012 - Foundations of Physics 42 (5):709-719.
    Hardy’s non-locality paradox is a proof without inequalities showing that certain non-local correlations violate local realism. It is ‘possibilistic’ in the sense that one only distinguishes between possible outcomes (positive probability) and impossible outcomes (zero probability). Here we show that Hardy’s paradox is quite universal: in any (2,2,l) or (2,k,2) Bell scenario, the occurrence of Hardy’s paradox is a necessary and sufficient condition for possibilistic non-locality. In particular, it subsumes all ladder paradoxes. This universality of Hardy’s paradox is not true (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Generalization of the Greenberger-Horne-Zeilinger algebraic proof of nonlocality.Robert K. Clifton, Michael L. G. Redhead & Jeremy N. Butterfield - 1991 - Foundations of Physics 21 (2):149-184.
    We further develop a recent new proof (by Greenberger, Horne, and Zeilinger—GHZ) that local deterministic hidden-variable theories are inconsistent with certain strict correlations predicted by quantum mechanics. First, we generalize GHZ's proof so that it applies to factorable stochastic theories, theories in which apparatus hidden variables are causally relevant to measurement results, and theories in which the hidden variables evolve indeterministically prior to the particle-apparatus interactions. Then we adopt a more general measure-theoretic approach which requires that GHZ's argument be modified (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Generalized Quantum Theory: Overview and Latest Developments. [REVIEW]Thomas Filk & Hartmann Römer - 2011 - Axiomathes 21 (2):211-220.
    The main formal structures of generalized quantum theory are summarized. Recent progress has sharpened some of the concepts, in particular the notion of an observable, the action of an observable on states (putting more emphasis on the role of proposition observables), and the concept of generalized entanglement. Furthermore, the active role of the observer in the structure of observables and the partitioning of systems is emphasized.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Quantum Locality.Robert B. Griffiths - 2011 - Foundations of Physics 41 (4):705-733.
    It is argued that while quantum mechanics contains nonlocal or entangled states, the instantaneous or nonlocal influences sometimes thought to be present due to violations of Bell inequalities in fact arise from mistaken attempts to apply classical concepts and introduce probabilities in a manner inconsistent with the Hilbert space structure of standard quantum mechanics. Instead, Einstein locality is a valid quantum principle: objective properties of individual quantum systems do not change when something is done to another noninteracting system. There is (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Recursive definition for elements of reality.Asher Peres - 1992 - Foundations of Physics 22 (3):357-361.
    “Elements of reality” are defined as in the work of Einstein, Podolsky, and Rosen. It is further assumed that the sum or product of twocommuting elements of reality also is an element of reality. An algebra contradiction ensues.
    Download  
     
    Export citation  
     
    Bookmark  
  • Propensities, correlations, and metaphysics.Michael Redhead - 1992 - Foundations of Physics 22 (3):381-394.
    An attempt is made to defend realism and the absence of space-like causation in quantum mechanics, by invoking indeterminism and a new necessary condition for stochastic causality, we term robustness. This condition is defended against recent critical attacks by Cartwright and Jones, and by Healey, and the violation of the robustness condition in Bell-type correlation experiments is shown to follow if an appropriate interpretation of the state vector is employed.
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum Properties of a Single Beam Splitter.F. Laloë & W. J. Mullin - 2012 - Foundations of Physics 42 (1):53-67.
    When a single beam-splitter receives two beams of bosons described by Fock states (Bose-Einstein condensates at very low temperatures), interesting generalizations of the two-photon Hong-Ou-Mandel effect take place for larger number of particles. The distributions of particles at two detectors behind the beam splitter can be understood as resulting from the combination of two effects, the spontaneous phase appearing during quantum measurement, and the quantum angle. The latter introduces quantum “population oscillations”, which can be seen as a generalized Hong-Ou-Mandel effect, (...)
    Download  
     
    Export citation  
     
    Bookmark